python时间序列分析

什么是时间序列

      时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值。在这里需要强调一点的是,时间序列分析并不是关于时间的回归,它主要是研究自身的变化规律的(这里不考虑含外生变量的时间序列)。

为什么用python

  两个字总结“情怀”,爱屋及乌,个人比较喜欢python,就用python撸了。能做时间序列的软件很多,SAS、R、SPSS、Eviews甚至matlab等等,实际工作中应用得比较多的应该还是SAS和R,前者推荐王燕写的《应用时间序列分析》,后者推荐“基于R语言的时间序列建模完整教程”这篇博文(翻译版)。python作为科学计算的利器,当然也有相关分析的包:statsmodels中tsa模块,当然这个包和SAS、R是比不了,但是python有另一个神器:pandas!pandas在时间序列上的应用,能简化我们很多的工作。

环境配置

  python推荐直接装Anaconda,它集成了许多科学计算包,有一些包自己手动去装还是挺费劲的。statsmodels需要自己去安装,这里我推荐使用0.6的稳定版,0.7及其以上的版本能在github上找到,该版本在安装时会用C编译好,所以修改底层的一些代码将不会起作用。

时间序列分析

1.基本模型

  自回归移动平均模型(ARMA(p,q))是时间序列中最为重要的模型之一,它主要由两部分组成: AR代表p阶自回归过程,MA代表q阶移动平均过程,其公式如下:

     

  

                    依据模型的形式、特性及自相关和偏自相关函数的特征,总结如下:   

  

在时间序列中,ARIMA模型是在ARMA模型的基础上多了差分的操作。

2.pandas时间序列操作

大熊猫真的很可爱,这里简单介绍一下它在时间序列上的可爱之处。和许多时间序列分析一样,本文同样使用航空乘客数据(AirPassengers.csv)作为样例。

数据读取:

复制代码
# -*- coding:utf-8 -*-
import numpy as np
import pandas as pd
from datetime import datetime
import matplotlib.pylab as plt
# 读取数据,pd.read_csv默认生成DataFrame对象,需将其转换成Series对象
df = pd.read_csv('AirPassengers.csv', encoding='utf-8', index_col='date')
df.index = pd.to_datetime(df.index) # 将字符串索引转换成时间索引
ts = df['x'] # 生成pd.Series对象
# 查看数据格式
ts.head()
ts.head().index
复制代码

   

查看某日的值既可以使用字符串作为索引,又可以直接使用时间对象作为索引

ts['1949-01-01']
ts[datetime(1949,1,1)]

两者的返回值都是第一个序列值:112

如果要查看某一年的数据,pandas也能非常方便的实现

ts['1949']

    

切片操作:

ts['1949-1' : '1949-6']

    

注意时间索引的切片操作起点和尾部都是包含的,这点与数值索引有所不同

pandas还有很多方便的时间序列函数,在后面的实际应用中在进行说明。

3. 平稳性检验

我们知道序列平稳性是进行时间序列分析的前提条件,很多人都会有疑问,为什么要满足平稳性的要求呢?在大数定理和中心定理中要求样本同分布(这里同分布等价于时间序列中的平稳性),而我们的建模过程中有很多都是建立在大数定理和中心极限定理的前提条件下的,如果它不满足,得到的许多结论都是不可靠的。以虚假回归为例,当响应变量和输入变量都平稳时,我们用t统计量检验标准化系数的显著性。而当响应变量和输入变量不平稳时,其标准化系数不在满足t分布,这时再用t检验来进行显著性分析,导致拒绝原假设的概率增加,即容易犯第一类错误,从而得出错误的结论。

平稳时间序列有两种定义:严平稳和宽平稳

严平稳顾名思义,是一种条件非常苛刻的平稳性,它要求序列随着时间的推移,其统计性质保持不变。对于任意的τ,其联合概率密度函数满足:

     

严平稳的条件只是理论上的存在,现实中用得比较多的是宽平稳的条件。

宽平稳也叫弱平稳或者二阶平稳(均值和方差平稳),它应满足:

  • 常数均值
  • 常数方差
  • 常数自协方差

平稳性检验:观察法和单位根检验法

基于此,我写了一个名为test_stationarity的统计性检验模块,以便将某些统计检验结果更加直观的展现出来。

复制代码
# -*- coding:utf-8 -*-
from statsmodels.tsa.stattools import adfuller
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# 移动平均图
def draw_trend(timeSeries, size): f = plt.figure(facecolor='white') # 对size个数据进行移动平均 rol_mean = timeSeries.rolling(window=size).mean() # 对size个数据进行加权移动平均 rol_weighted_mean = pd.ewma(timeSeries, span=size) timeSeries.plot(color='blue', label='Original') rolmean.plot(color='red', label='Rolling Mean') rol_weighted_mean.plot(color='black', label='Weighted Rolling Mean') plt.legend(loc='best') plt.title('Rolling Mean') plt.show() def draw_ts(timeSeries):
f = plt.figure(facecolor='white') timeSeries.plot(color
='blue') plt.show() '''
  Unit Root Test The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. That is to say the bigger the p-value the more reason we assert that there is a unit root ''' def testStationarity(ts): dftest = adfuller(ts) # 对上述函数求得的值进行语义描述 dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used']) for key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value return dfoutput # 自相关和偏相关图,默认阶数为31阶 def draw_acf_pacf(ts, lags=31): f = plt.figure(facecolor='white') ax1 = f.add_subplot(211) plot_acf(ts, lags=31, ax=ax1) ax2 = f.add_subplot(212) plot_pacf(ts, lags=31, ax=ax2) plt.show()
复制代码

 

观察法,通俗的说就是通过观察序列的趋势图与相关图是否随着时间的变化呈现出某种规律。所谓的规律就是时间序列经常提到的周期性因素,现实中遇到得比较多的是线性周期成分,这类周期成分可以采用差分或者移动平均来解决,而对于非线性周期成分的处理相对比较复杂,需要采用某些分解的方法。下图为航空数据的线性图,可以明显的看出它具有年周期成分和长期趋势成分。平稳序列的自相关系数会快速衰减,下面的自相关图并不能体现出该特征,所以我们有理由相信该序列是不平稳的。

              

     

 

单位根检验:ADF是一种常用的单位根检验方法,他的原假设为序列具有单位根,即非平稳,对于一个平稳的时序数据,就需要在给定的置信水平上显著,拒绝原假设。ADF只是单位根检验的方法之一,如果想采用其他检验方法,可以安装第三方包arch,里面提供了更加全面的单位根检验方法,个人还是比较钟情ADF检验。以下为检验结果,其p值大于0.99,说明并不能拒绝原假设。

      

3. 平稳性处理

由前面的分析可知,该序列是不平稳的,然而平稳性是时间序列分析的前提条件,故我们需要对不平稳的序列进行处理将其转换成平稳的序列。

a. 对数变换

对数变换主要是为了减小数据的振动幅度,使其线性规律更加明显(我是这么理解的时间序列模型大部分都是线性的,为了尽量降低非线性的因素,需要对其进行预处理,也许我理解的不对)。对数变换相当于增加了一个惩罚机制,数据越大其惩罚越大,数据越小惩罚越小。这里强调一下,变换的序列需要满足大于0,小于0的数据不存在对数变换。

ts_log = np.log(ts)
test_stationarity.draw_ts(ts_log)

    

b. 平滑法

根据平滑技术的不同,平滑法具体分为移动平均法和指数平均法。

移动平均即利用一定时间间隔内的平均值作为某一期的估计值,而指数平均则是用变权的方法来计算均值

test_stationarity.draw_trend(ts_log, 12)

    

从上图可以发现窗口为12的移动平均能较好的剔除年周期性因素,而指数平均法是对周期内的数据进行了加权,能在一定程度上减小年周期因素,但并不能完全剔除,如要完全剔除可以进一步进行差分操作。

c.  差分

时间序列最常用来剔除周期性因素的方法当属差分了,它主要是对等周期间隔的数据进行线性求减。前面我们说过,ARIMA模型相对ARMA模型,仅多了差分操作,ARIMA模型几乎是所有时间序列软件都支持的,差分的实现与还原都非常方便。而statsmodel中,对差分的支持不是很好,它不支持高阶和多阶差分,为什么不支持,这里引用作者的说法:

      

作者大概的意思是说预测方法中并没有解决高于2阶的差分,有没有感觉很牵强,不过没关系,我们有pandas。我们可以先用pandas将序列差分好,然后在对差分好的序列进行ARIMA拟合,只不过这样后面会多了一步人工还原的工作。

diff_12 = ts_log.diff(12)
diff_12.dropna(inplace=True)
diff_12_1 = diff_12.diff(1)
diff_12_1.dropna(inplace=True)
test_stationarity.testStationarity(diff_12_1)

    

从上面的统计检验结果可以看出,经过12阶差分和1阶差分后,该序列满足平稳性的要求了。

d. 分解

所谓分解就是将时序数据分离成不同的成分。statsmodels使用的X-11分解过程,它主要将时序数据分离成长期趋势、季节趋势和随机成分。与其它统计软件一样,statsmodels也支持两类分解模型,加法模型和乘法模型,这里我只实现加法,乘法只需将model的参数设置为"multiplicative"即可。

from statsmodels.tsa.seasonal import seasonal_decompose
decomposition = seasonal_decompose(ts_log, model="additive")

trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid

    

得到不同的分解成分后,就可以使用时间序列模型对各个成分进行拟合,当然也可以选择其他预测方法。我曾经用过小波对时序数据进行过分解,然后分别采用时间序列拟合,效果还不错。由于我对小波的理解不是很好,只能简单的调用接口,如果有谁对小波、傅里叶、卡尔曼理解得比较透,可以将时序数据进行更加准确的分解,由于分解后的时序数据避免了他们在建模时的交叉影响,所以我相信它将有助于预测准确性的提高。

4. 模型识别

在前面的分析可知,该序列具有明显的年周期与长期成分。对于年周期成分我们使用窗口为12的移动平进行处理,对于长期趋势成分我们采用1阶差分来进行处理。

rol_mean = ts_log.rolling(window=12).mean()
rol_mean.dropna(inplace=True)
ts_diff_1 = rol_mean.diff(1)
ts_diff_1.dropna(inplace=True)
test_stationarity.testStationarity(ts_diff_1)

     

观察其统计量发现该序列在置信水平为95%的区间下并不显著,我们对其进行再次一阶差分。再次差分后的序列其自相关具有快速衰减的特点,t统计量在99%的置信水平下是显著的,这里我不再做详细说明。

ts_diff_2 = ts_diff_1.diff(1)
ts_diff_2.dropna(inplace=True)

      

数据平稳后,需要对模型定阶,即确定p、q的阶数。观察上图,发现自相关和偏相系数都存在拖尾的特点,并且他们都具有明显的一阶相关性,所以我们设定p=1, q=1。下面就可以使用ARMA模型进行数据拟合了。这里我不使用ARIMA(ts_diff_1, order=(1, 1, 1))进行拟合,是因为含有差分操作时,预测结果还原老出问题,至今还没弄明白。 

from statsmodels.tsa.arima_model import ARMA
model = ARMA(ts_diff_2, order=(1, 1)) 
result_arma = model.fit( disp=-1, method='css')

5. 样本拟合

 模型拟合完后,我们就可以对其进行预测了。由于ARMA拟合的是经过相关预处理后的数据,故其预测值需要通过相关逆变换进行还原。

复制代码
predict_ts = result_arma.predict()
# 一阶差分还原
diff_shift_ts = ts_diff_1.shift(1)
diff_recover_1 = predict_ts.add(diff_shift_ts)
# 再次一阶差分还原 rol_shift_ts = rol_mean.shift(1) diff_recover = diff_recover_1.add(rol_shift_ts) # 移动平均还原 rol_sum = ts_log.rolling(window=11).sum() rol_recover = diff_recover*12 - rol_sum.shift(1) # 对数还原 log_recover = np.exp(rol_recover) log_recover.dropna(inplace=True)
复制代码

我们使用均方根误差(RMSE)来评估模型样本内拟合的好坏。利用该准则进行判别时,需要剔除“非预测”数据的影响。

复制代码
ts = ts[log_recover.index]  # 过滤没有预测的记录
plt.figure(facecolor='white') log_recover.plot(color='blue', label='Predict') ts.plot(color='red', label='Original') plt.legend(loc='best') plt.title('RMSE: %.4f'% np.sqrt(sum((log_recover-ts)**2)/ts.size)) plt.show()
复制代码

  

观察上图的拟合效果,均方根误差为11.8828,感觉还过得去。

6. 完善ARIMA模型

前面提到statsmodels里面的ARIMA模块不支持高阶差分,我们的做法是将差分分离出来,但是这样会多了一步人工还原的操作。基于上述问题,我将差分过程进行了封装,使序列能按照指定的差分列表依次进行差分,并相应的构造了一个还原的方法,实现差分序列的自动还原。

复制代码
# 差分操作
def diff_ts(ts, d):
    global shift_ts_list
    #  动态预测第二日的值时所需要的差分序列
    global last_data_shift_list
    shift_ts_list = []
    last_data_shift_list = []
    tmp_ts = ts
    for i in d:
        last_data_shift_list.append(tmp_ts[-i])
        print last_data_shift_list
        shift_ts = tmp_ts.shift(i)
        shift_ts_list.append(shift_ts)
        tmp_ts = tmp_ts - shift_ts
    tmp_ts.dropna(inplace=True)
    return tmp_ts

# 还原操作
def predict_diff_recover(predict_value, d):
    if isinstance(predict_value, float):
        tmp_data = predict_value
        for i in range(len(d)):
            tmp_data = tmp_data + last_data_shift_list[-i-1]
    elif isinstance(predict_value, np.ndarray):
        tmp_data = predict_value[0]
        for i in range(len(d)):
            tmp_data = tmp_data + last_data_shift_list[-i-1]
    else:
        tmp_data = predict_value
        for i in range(len(d)):
            try:
                tmp_data = tmp_data.add(shift_ts_list[-i-1])
            except:
                raise ValueError('What you input is not pd.Series type!')
        tmp_data.dropna(inplace=True)
    return tmp_data
复制代码

现在我们直接使用差分的方法进行数据处理,并以同样的过程进行数据预测与还原。

diffed_ts = diff_ts(ts_log, d=[12, 1])
model = arima_model(diffed_ts)
model.certain_model(1, 1)
predict_ts = model.properModel.predict()
diff_recover_ts = predict_diff_recover(predict_ts, d=[12, 1])
log_recover = np.exp(diff_recover_ts)

    

是不是发现这里的预测结果和上一篇的使用12阶移动平均的预测结果一模一样。这是因为12阶移动平均加上一阶差分与直接12阶差分是等价的关系,后者是前者数值的12倍,这个应该不难推导。

对于个数不多的时序数据,我们可以通过观察自相关图和偏相关图来进行模型识别,倘若我们要分析的时序数据量较多,例如要预测每只股票的走势,我们就不可能逐个去调参了。这时我们可以依据BIC准则识别模型的p, q值,通常认为BIC值越小的模型相对更优。这里我简单介绍一下BIC准则,它综合考虑了残差大小和自变量的个数,残差越小BIC值越小,自变量个数越多BIC值越大。个人觉得BIC准则就是对模型过拟合设定了一个标准(过拟合这东西应该以辩证的眼光看待)。

复制代码
def proper_model(data_ts, maxLag):
    init_bic = sys.maxint
    init_p = 0
    init_q = 0
    init_properModel = None
    for p in np.arange(maxLag):
        for q in np.arange(maxLag):
            model = ARMA(data_ts, order=(p, q))
            try:
                results_ARMA = model.fit(disp=-1, method='css')
            except:
                continue
            bic = results_ARMA.bic
            if bic < init_bic:
                init_p = p
                init_q = q
                init_properModel = results_ARMA
                init_bic = bic
    return init_bic, init_p, init_q, init_properModel
复制代码

相对最优参数识别结果:BIC: -1090.44209358 p: 0 q: 1 , RMSE:11.8817198331。我们发现模型自动识别的参数要比我手动选取的参数更优。

7.滚动预测

所谓滚动预测是指通过添加最新的数据预测第二天的值。对于一个稳定的预测模型,不需要每天都去拟合,我们可以给他设定一个阀值,例如每周拟合一次,该期间只需通过添加最新的数据实现滚动预测即可。基于此我编写了一个名为arima_model的类,主要包含模型自动识别方法,滚动预测的功能,详细代码可以查看附录。数据的动态添加:

复制代码
 
 
from dateutil.relativedelta import relativedelta
def _add_new_data(ts, dat, type='day'):
if type == 'day':
        new_index = ts.index[-1] + relativedelta(days=1)
    elif type == 'month':
        new_index = ts.index[-1] + relativedelta(months=1)
    ts[new_index] = dat

def add_today_data(model, ts,  data, d, type='day'):
    _add_new_data(ts, data, type)  # 为原始序列添加数据
    # 为滞后序列添加新值
    d_ts = diff_ts(ts, d)
    model.add_today_data(d_ts[-1], type)

def forecast_next_day_data(model, type='day'):
    if model == None:
        raise ValueError('No model fit before')
    fc = model.forecast_next_day_value(type)
    return predict_diff_recover(fc, [12, 1])
复制代码

现在我们就可以使用滚动预测的方法向外预测了,取1957年之前的数据作为训练数据,其后的数据作为测试,并设定模型每第七天就会重新拟合一次。这里的diffed_ts对象会随着add_today_data方法自动添加数据,这是由于它与add_today_data方法中的d_ts指向的同一对象,该对象会动态的添加数据。

复制代码
ts_train = ts_log[:'1956-12']
ts_test = ts_log['1957-1':]

diffed_ts = diff_ts(ts_train, [12, 1])
forecast_list = []
for i, dta in enumerate(ts_test): if i%7 == 0: model = arima_model(diffed_ts) model.certain_model(1, 1) forecast_data = forecast_next_day_data(model, type='month') forecast_list.append(forecast_data) add_today_data(model, ts_train, dta, [12, 1], type='month') predict_ts = pd.Series(data=forecast_list, index=ts['1957-1':].index)
log_recover = np.exp(predict_ts)
original_ts = ts['1957-1':]
复制代码

    

动态预测的均方根误差为:14.6479,与前面样本内拟合的均方根误差相差不大,说明模型并没有过拟合,并且整体预测效果都较好。

8. 模型序列化

在进行动态预测时,我们不希望将整个模型一直在内存中运行,而是希望有新的数据到来时才启动该模型。这时我们就应该把整个模型从内存导出到硬盘中,而序列化正好能满足该要求。序列化最常用的就是使用json模块了,但是它是时间对象支持得不是很好,有人对json模块进行了拓展以使得支持时间对象,这里我们不采用该方法,我们使用pickle模块,它和json的接口基本相同,有兴趣的可以去查看一下。我在实际应用中是采用的面向对象的编程,它的序列化主要是将类的属性序列化即可,而在面向过程的编程中,模型序列化需要将需要序列化的对象公有化,这样会使得对前面函数的参数改动较大,我不在详细阐述该过程。

总结

与其它统计语言相比,python在统计分析这块还显得不那么“专业”。随着numpy、pandas、scipy、sklearn、gensim、statsmodels等包的推动,我相信也祝愿python在数据分析这块越来越好。与SAS和R相比,python的时间序列模块还不是很成熟,我这里仅起到抛砖引玉的作用,希望各位能人志士能贡献自己的力量,使其更加完善。实际应用中我全是面向过程来编写的,为了阐述方便,我用面向过程重新罗列了一遍,实在感觉很不方便。原本打算分三篇来写的,还有一部分实际应用的部分,不打算再写了,还请大家原谅。实际应用主要是具体问题具体分析,这当中第一步就是要查询问题,这步花的时间往往会比较多,然后再是解决问题。以我前面项目遇到的问题为例,当时遇到了以下几个典型的问题:1.周期长度不恒定的周期成分,例如每月的1号具有周期性,但每月1号与1号之间的时间间隔是不相等的;2.含有缺失值以及含有记录为0的情况无法进行对数变换;3.节假日的影响等等。

附录

复制代码
# -*-coding:utf-8-*-
import pandas as pd
import numpy as np
from statsmodels.tsa.arima_model import ARMA
import sys
from dateutil.relativedelta import relativedelta
from copy import deepcopy
import matplotlib.pyplot as plt

class arima_model:

    def __init__(self, ts, maxLag=9):
        self.data_ts = ts
        self.resid_ts = None
        self.predict_ts = None
        self.maxLag = maxLag
        self.p = maxLag
        self.q = maxLag
        self.properModel = None
        self.bic = sys.maxint

    # 计算最优ARIMA模型,将相关结果赋给相应属性
    def get_proper_model(self):
        self._proper_model()
        self.predict_ts = deepcopy(self.properModel.predict())
        self.resid_ts = deepcopy(self.properModel.resid)

    # 对于给定范围内的p,q计算拟合得最好的arima模型,这里是对差分好的数据进行拟合,故差分恒为0
    def _proper_model(self):
        for p in np.arange(self.maxLag):
            for q in np.arange(self.maxLag):
                # print p,q,self.bic
                model = ARMA(self.data_ts, order=(p, q))
                try:
                    results_ARMA = model.fit(disp=-1, method='css')
                except:
                    continue
                bic = results_ARMA.bic
                # print 'bic:',bic,'self.bic:',self.bic
                if bic < self.bic:
                    self.p = p
                    self.q = q
                    self.properModel = results_ARMA
                    self.bic = bic
                    self.resid_ts = deepcopy(self.properModel.resid)
                    self.predict_ts = self.properModel.predict()

    # 参数确定模型
    def certain_model(self, p, q):
            model = ARMA(self.data_ts, order=(p, q))
            try:
                self.properModel = model.fit( disp=-1, method='css')
                self.p = p
                self.q = q
                self.bic = self.properModel.bic
                self.predict_ts = self.properModel.predict()
                self.resid_ts = deepcopy(self.properModel.resid)
            except:
                print 'You can not fit the model with this parameter p,q, ' \
                      'please use the get_proper_model method to get the best model'

    # 预测第二日的值
    def forecast_next_day_value(self, type='day'):
        # 我修改了statsmodels包中arima_model的源代码,添加了constant属性,需要先运行forecast方法,为constant赋值
        self.properModel.forecast()
        if self.data_ts.index[-1] != self.resid_ts.index[-1]:
            raise ValueError('''The index is different in data_ts and resid_ts, please add new data to data_ts.
            If you just want to forecast the next day data without add the real next day data to data_ts,
            please run the predict method which arima_model included itself''')
        if not self.properModel:
            raise ValueError('The arima model have not computed, please run the proper_model method before')
        para = self.properModel.params

        # print self.properModel.params
        if self.p == 0:   # It will get all the value series with setting self.data_ts[-self.p:] when p is zero
            ma_value = self.resid_ts[-self.q:]
            values = ma_value.reindex(index=ma_value.index[::-1])
        elif self.q == 0:
            ar_value = self.data_ts[-self.p:]
            values = ar_value.reindex(index=ar_value.index[::-1])
        else:
            ar_value = self.data_ts[-self.p:]
            ar_value = ar_value.reindex(index=ar_value.index[::-1])
            ma_value = self.resid_ts[-self.q:]
            ma_value = ma_value.reindex(index=ma_value.index[::-1])
            values = ar_value.append(ma_value)

        predict_value = np.dot(para[1:], values) + self.properModel.constant[0]
        self._add_new_data(self.predict_ts, predict_value, type)
        return predict_value

    # 动态添加数据函数,针对索引是月份和日分别进行处理
    def _add_new_data(self, ts, dat, type='day'):
        if type == 'day':
            new_index = ts.index[-1] + relativedelta(days=1)
        elif type == 'month':
            new_index = ts.index[-1] + relativedelta(months=1)
        ts[new_index] = dat

    def add_today_data(self, dat, type='day'):
        self._add_new_data(self.data_ts, dat, type)
        if self.data_ts.index[-1] != self.predict_ts.index[-1]:
            raise ValueError('You must use the forecast_next_day_value method forecast the value of today before')
        self._add_new_data(self.resid_ts, self.data_ts[-1] - self.predict_ts[-1], type)

if __name__ == '__main__':
    df = pd.read_csv('AirPassengers.csv', encoding='utf-8', index_col='date')
    df.index = pd.to_datetime(df.index)
    ts = df['x']

    # 数据预处理
    ts_log = np.log(ts)
    rol_mean = ts_log.rolling(window=12).mean()
    rol_mean.dropna(inplace=True)
    ts_diff_1 = rol_mean.diff(1)
    ts_diff_1.dropna(inplace=True)
    ts_diff_2 = ts_diff_1.diff(1)
    ts_diff_2.dropna(inplace=True)

    # 模型拟合
    model = arima_model(ts_diff_2)
    #  这里使用模型参数自动识别
    model.get_proper_model()
    print 'bic:', model.bic, 'p:', model.p, 'q:', model.q
    print model.properModel.forecast()[0]
    print model.forecast_next_day_value(type='month')

    # 预测结果还原
    predict_ts = model.properModel.predict()
    diff_shift_ts = ts_diff_1.shift(1)
    diff_recover_1 = predict_ts.add(diff_shift_ts)
    rol_shift_ts = rol_mean.shift(1)
    diff_recover = diff_recover_1.add(rol_shift_ts)
    rol_sum = ts_log.rolling(window=11).sum()
    rol_recover = diff_recover*12 - rol_sum.shift(1)
    log_recover = np.exp(rol_recover)
    log_recover.dropna(inplace=True)

    # 预测结果作图
    ts = ts[log_recover.index]
    plt.figure(facecolor='white')
    log_recover.plot(color='blue', label='Predict')
    ts.plot(color='red', label='Original')
    plt.legend(loc='best')
    plt.title('RMSE: %.4f'% np.sqrt(sum((log_recover-ts)**2)/ts.size))
    plt.show()
复制代码

 修改的arima_model代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
# Note: The information criteria add 1 to the number of parameters
#       whenever the model has an AR or MA term since, in principle,
#       the variance could be treated as a free parameter and restricted
#       This code does not allow this, but it adds consistency with other
#       packages such as gretl and X12-ARIMA
 
from  __future__  import  absolute_import
from  statsmodels.compat.python  import  string_types,  range
# for 2to3 with extensions
 
from  datetime  import  datetime
 
import  numpy as np
from  scipy  import  optimize
from  scipy.stats  import  t, norm
from  scipy.signal  import  lfilter
from  numpy  import  dot, log, zeros, pi
from  numpy.linalg  import  inv
 
from  statsmodels.tools.decorators  import  (cache_readonly,
                                           resettable_cache)
import  statsmodels.tsa.base.tsa_model as tsbase
import  statsmodels.base.wrapper as wrap
from  statsmodels.regression.linear_model  import  yule_walker, GLS
from  statsmodels.tsa.tsatools  import  (lagmat, add_trend,
                                       _ar_transparams, _ar_invtransparams,
                                       _ma_transparams, _ma_invtransparams,
                                       unintegrate, unintegrate_levels)
from  statsmodels.tsa.vector_ar  import  util
from  statsmodels.tsa.ar_model  import  AR
from  statsmodels.tsa.arima_process  import  arma2ma
from  statsmodels.tools.numdiff  import  approx_hess_cs, approx_fprime_cs
from  statsmodels.tsa.base.datetools  import  _index_date
from  statsmodels.tsa.kalmanf  import  KalmanFilter
 
_armax_notes  =  """
 
         Notes
         -----
         If exogenous variables are given, then the model that is fit is
 
         .. math::
 
            \\phi(L)(y_t - X_t\\beta) = \\theta(L)\epsilon_t
 
         where :math:`\\phi` and :math:`\\theta` are polynomials in the lag
         operator, :math:`L`. This is the regression model with ARMA errors,
         or ARMAX model. This specification is used, whether or not the model
         is fit using conditional sum of square or maximum-likelihood, using
         the `method` argument in
         :meth:`statsmodels.tsa.arima_model.%(Model)s.fit`. Therefore, for
         now, `css` and `mle` refer to estimation methods only. This may
         change for the case of the `css` model in future versions.
"""
 
_arma_params  =  """\
     endog : array-like
         The endogenous variable.
     order : iterable
         The (p,q) order of the model for the number of AR parameters,
         differences, and MA parameters to use.
     exog : array-like, optional
         An optional arry of exogenous variables. This should *not* include a
         constant or trend. You can specify this in the `fit` method."""
 
_arma_model  =  "Autoregressive Moving Average ARMA(p,q) Model"
 
_arima_model  =  "Autoregressive Integrated Moving Average ARIMA(p,d,q) Model"
 
_arima_params  =  """\
     endog : array-like
         The endogenous variable.
     order : iterable
         The (p,d,q) order of the model for the number of AR parameters,
         differences, and MA parameters to use.
     exog : array-like, optional
         An optional arry of exogenous variables. This should *not* include a
         constant or trend. You can specify this in the `fit` method."""
 
_predict_notes  =  """
         Notes
         -----
         Use the results predict method instead.
"""
 
_results_notes  =  """
         Notes
         -----
         It is recommended to use dates with the time-series models, as the
         below will probably make clear. However, if ARIMA is used without
         dates and/or `start` and `end` are given as indices, then these
         indices are in terms of the *original*, undifferenced series. Ie.,
         given some undifferenced observations::
 
          1970Q1, 1
          1970Q2, 1.5
          1970Q3, 1.25
          1970Q4, 2.25
          1971Q1, 1.2
          1971Q2, 4.1
 
         1970Q1 is observation 0 in the original series. However, if we fit an
         ARIMA(p,1,q) model then we lose this first observation through
         differencing. Therefore, the first observation we can forecast (if
         using exact MLE) is index 1. In the differenced series this is index
         0, but we refer to it as 1 from the original series.
"""
 
_predict  =  """
         %(Model)s model in-sample and out-of-sample prediction
 
         Parameters
         ----------
         %(params)s
         start : int, str, or datetime
             Zero-indexed observation number at which to start forecasting, ie.,
             the first forecast is start. Can also be a date string to
             parse or a datetime type.
         end : int, str, or datetime
             Zero-indexed observation number at which to end forecasting, ie.,
             the first forecast is start. Can also be a date string to
             parse or a datetime type. However, if the dates index does not
             have a fixed frequency, end must be an integer index if you
             want out of sample prediction.
         exog : array-like, optional
             If the model is an ARMAX and out-of-sample forecasting is
             requested, exog must be given. Note that you'll need to pass
             `k_ar` additional lags for any exogenous variables. E.g., if you
             fit an ARMAX(2, q) model and want to predict 5 steps, you need 7
             observations to do this.
         dynamic : bool, optional
             The `dynamic` keyword affects in-sample prediction. If dynamic
             is False, then the in-sample lagged values are used for
             prediction. If `dynamic` is True, then in-sample forecasts are
             used in place of lagged dependent variables. The first forecasted
             value is `start`.
         %(extra_params)s
 
         Returns
         -------
         %(returns)s
         %(extra_section)s
"""
 
_predict_returns  =  """predict : array
             The predicted values.
 
"""
 
_arma_predict  =  _predict  %  { "Model"  "ARMA" ,
                             "params"  """
             params : array-like
             The fitted parameters of the model.""" ,
                             "extra_params"  : "",
                             "returns"  : _predict_returns,
                             "extra_section"  : _predict_notes}
 
_arma_results_predict  =  _predict  %  { "Model"  "ARMA" "params"  : "",
                                     "extra_params"  : "",
                                     "returns"  : _predict_returns,
                                     "extra_section"  : _results_notes}
 
_arima_predict  =  _predict  %  { "Model"  "ARIMA" ,
                              "params"  """params : array-like
             The fitted parameters of the model.""" ,
                              "extra_params"  """typ : str {'linear', 'levels'}
 
             - 'linear' : Linear prediction in terms of the differenced
               endogenous variables.
             - 'levels' : Predict the levels of the original endogenous
               variables.\n""" , "returns" : _predict_returns,
                              "extra_section"  : _predict_notes}
 
_arima_results_predict  =  _predict  %  { "Model"  "ARIMA" ,
                                      "params"  : "",
                                      "extra_params"  :
                                      """typ : str {'linear', 'levels'}
 
             - 'linear' : Linear prediction in terms of the differenced
               endogenous variables.
             - 'levels' : Predict the levels of the original endogenous
               variables.\n""" ,
                                      "returns"  : _predict_returns,
                                      "extra_section"  : _results_notes}
 
_arima_plot_predict_example  =  """        Examples
         --------
         >>> import statsmodels.api as sm
         >>> import matplotlib.pyplot as plt
         >>> import pandas as pd
         >>>
         >>> dta = sm.datasets.sunspots.load_pandas().data[['SUNACTIVITY']]
         >>> dta.index = pd.DatetimeIndex(start='1700', end='2009', freq='A')
         >>> res = sm.tsa.ARMA(dta, (3, 0)).fit()
         >>> fig, ax = plt.subplots()
         >>> ax = dta.ix['1950':].plot(ax=ax)
         >>> fig = res.plot_predict('1990', '2012', dynamic=True, ax=ax,
         ...                        plot_insample=False)
         >>> plt.show()
 
         .. plot:: plots/arma_predict_plot.py
"""
 
_plot_predict  =  ( """
         Plot forecasts
                       """  +  '\n' .join(_predict.split( '\n' )[ 2 :]))  %  {
                       "params"  : "",
                           "extra_params"  """alpha : float, optional
             The confidence intervals for the forecasts are (1 - alpha)%
         plot_insample : bool, optional
             Whether to plot the in-sample series. Default is True.
         ax : matplotlib.Axes, optional
             Existing axes to plot with.""" ,
                       "returns"  """fig : matplotlib.Figure
             The plotted Figure instance""" ,
                       "extra_section"  : ( '\n'  +  _arima_plot_predict_example  +
                                          '\n'  +  _results_notes)
                       }
 
_arima_plot_predict  =  ( """
         Plot forecasts
                       """  +  '\n' .join(_predict.split( '\n' )[ 2 :]))  %  {
                       "params"  : "",
                           "extra_params"  """alpha : float, optional
             The confidence intervals for the forecasts are (1 - alpha)%
         plot_insample : bool, optional
             Whether to plot the in-sample series. Default is True.
         ax : matplotlib.Axes, optional
             Existing axes to plot with.""" ,
                       "returns"  """fig : matplotlib.Figure
             The plotted Figure instance""" ,
                 "extra_section"  : ( '\n'  +  _arima_plot_predict_example  +
                                    '\n'  +
                                    '\n' .join(_results_notes.split( '\n' )[: 3 ])  +
                               ( """
         This is hard-coded to only allow plotting of the forecasts in levels.
""" +
                               '\n' .join(_results_notes.split( '\n' )[ 3 :]))
                       }
 
 
def  cumsum_n(x, n):
     if  n:
         - =  1
         =  np.cumsum(x)
         return  cumsum_n(x, n)
     else :
         return  x
 
 
def  _check_arima_start(start, k_ar, k_diff, method, dynamic):
     if  start <  0 :
         raise  ValueError( "The start index %d of the original series "
                          "has been differenced away"  %  start)
     elif  (dynamic  or  'mle'  not  in  method)  and  start < k_ar:
         raise  ValueError( "Start must be >= k_ar for conditional MLE "
                          "or dynamic forecast. Got %d"  %  start)
 
 
def  _get_predict_out_of_sample(endog, p, q, k_trend, k_exog, start, errors,
                                trendparam, exparams, arparams, maparams, steps,
                                method, exog = None ):
     """
     Returns endog, resid, mu of appropriate length for out of sample
     prediction.
     """
     if  q:
         resid  =  np.zeros(q)
         if  start  and  'mle'  in  method  or  (start  = =  and  not  start  = =  0 ):
             resid[:q]  =  errors[start - q:start]
         elif  start:
             resid[:q]  =  errors[start - q - p:start - p]
         else :
             resid[:q]  =  errors[ - q:]
     else :
         resid  =  None
 
     =  endog
     if  k_trend  = =  1 :
         # use expectation not constant
         if  k_exog >  0 :
             #TODO: technically should only hold for MLE not
             # conditional model. See #274.
             # ensure 2-d for conformability
             if  np.ndim(exog)  = =  1  and  k_exog  = =  1 :
                 # have a 1d series of observations -> 2d
                 exog  =  exog[:,  None ]
             elif  np.ndim(exog)  = =  1 :
                 # should have a 1d row of exog -> 2d
                 if  len (exog) ! =  k_exog:
                     raise  ValueError( "1d exog given and len(exog) != k_exog" )
                 exog  =  exog[ None , :]
             =  lagmat(np.dot(exog, exparams), p, original = 'in' , trim = 'both' )
             mu  =  trendparam  *  ( 1  -  arparams. sum ())
             # arparams were reversed in unpack for ease later
             mu  =  mu  +  (np.r_[ 1 - arparams[:: - 1 ]]  *  X). sum ( 1 )[:,  None ]
         else :
             mu  =  trendparam  *  ( 1  -  arparams. sum ())
             mu  =  np.array([mu] * steps)
     elif  k_exog >  0 :
         =  np.dot(exog, exparams)
         #NOTE: you shouldn't have to give in-sample exog!
         =  lagmat(X, p, original = 'in' , trim = 'both' )
         mu  =  (np.r_[ 1 - arparams[:: - 1 ]]  *  X). sum ( 1 )[:,  None ]
     else :
         mu  =  np.zeros(steps)
 
     endog  =  np.zeros(p  +  steps  -  1 )
 
     if  and  start:
         endog[:p]  =  y[start - p:start]
     elif  p:
         endog[:p]  =  y[ - p:]
 
     return  endog, resid, mu
 
 
def  _arma_predict_out_of_sample(params, steps, errors, p, q, k_trend, k_exog,
                                 endog, exog = None , start = 0 , method = 'mle' ):
     (trendparam, exparams,
      arparams, maparams)  =  _unpack_params(params, (p, q), k_trend,
                                           k_exog, reverse = True )
  #   print 'params:',params
  #   print 'arparams:',arparams,'maparams:',maparams
     endog, resid, mu  =  _get_predict_out_of_sample(endog, p, q, k_trend, k_exog,
                                                   start, errors, trendparam,
                                                   exparams, arparams,
                                                   maparams, steps, method,
                                                   exog)
#    print 'mu[-1]:',mu[-1], 'mu[0]:',mu[0]
     forecast  =  np.zeros(steps)
     if  steps  = =  1 :
         if  q:
             return  mu[ 0 +  np.dot(arparams, endog[:p])  +  np.dot(maparams,
                                                                 resid[:q]), mu[ 0 ]
         else :
             return  mu[ 0 +  np.dot(arparams, endog[:p]), mu[ 0 ]
 
     if  q:
         =  0   # if q == 1
     else :
         =  - 1
 
     for  in  range ( min (q, steps  -  1 )):
         fcast  =  (mu[i]  +  np.dot(arparams, endog[i:i  +  p])  +
                  np.dot(maparams[:q  -  i], resid[i:i  +  q]))
         forecast[i]  =  fcast
         endog[i + p]  =  fcast
 
     for  in  range (i  +  1 , steps  -  1 ):
         fcast  =  mu[i]  +  np.dot(arparams, endog[i:i + p])
         forecast[i]  =  fcast
         endog[i + p]  =  fcast
 
     #need to do one more without updating endog
     forecast[ - 1 =  mu[ - 1 +  np.dot(arparams, endog[steps  -  1 :])
     return  forecast, mu[ - 1 #Modified by me, the former is return forecast
 
 
def  _arma_predict_in_sample(start, end, endog, resid, k_ar, method):
     """
     Pre- and in-sample fitting for ARMA.
     """
     if  'mle'  in  method:
         fittedvalues  =  endog  -  resid   # get them all then trim
     else :
         fittedvalues  =  endog[k_ar:]  -  resid
 
     fv_start  =  start
     if  'mle'  not  in  method:
         fv_start  - =  k_ar   # start is in terms of endog index
     fv_end  =  min ( len (fittedvalues), end  +  1 )
     return  fittedvalues[fv_start:fv_end]
 
 
def  _validate(start, k_ar, k_diff, dates, method):
     if  isinstance (start, (string_types, datetime)):
         start  =  _index_date(start, dates)
         start  - =  k_diff
     if  'mle'  not  in  method  and  start < k_ar  -  k_diff:
         raise  ValueError( "Start must be >= k_ar for conditional "
                          "MLE or dynamic forecast. Got %s"  %  start)
 
     return  start
 
 
def  _unpack_params(params, order, k_trend, k_exog, reverse = False ):
     p, q  =  order
     =  k_trend  +  k_exog
     maparams  =  params[k + p:]
     arparams  =  params[k:k + p]
     trend  =  params[:k_trend]
     exparams  =  params[k_trend:k]
     if  reverse:
         return  trend, exparams, arparams[:: - 1 ], maparams[:: - 1 ]
     return  trend, exparams, arparams, maparams
 
 
def  _unpack_order(order):
     k_ar, k_ma, k  =  order
     k_lags  =  max (k_ar, k_ma + 1 )
     return  k_ar, k_ma, order, k_lags
 
 
def  _make_arma_names(data, k_trend, order, exog_names):
     k_ar, k_ma  =  order
     exog_names  =  exog_names  or  []
     ar_lag_names  =  util.make_lag_names([data.ynames], k_ar,  0 )
     ar_lag_names  =  [' '.join((' ar.', i))  for  in  ar_lag_names]
     ma_lag_names  =  util.make_lag_names([data.ynames], k_ma,  0 )
     ma_lag_names  =  [' '.join((' ma.', i))  for  in  ma_lag_names]
     trend_name  =  util.make_lag_names('',  0 , k_trend)
     exog_names  =  trend_name  +  exog_names  +  ar_lag_names  +  ma_lag_names
     return  exog_names
 
 
def  _make_arma_exog(endog, exog, trend):
     k_trend  =  1   # overwritten if no constant
     if  exog  is  None  and  trend  = =  'c' :    # constant only
         exog  =  np.ones(( len (endog),  1 ))
     elif  exog  is  not  None  and  trend  = =  'c' :   # constant plus exogenous
         exog  =  add_trend(exog, trend = 'c' , prepend = True )
     elif  exog  is  not  None  and  trend  = =  'nc' :
         # make sure it's not holding constant from last run
         if  exog.var()  = =  0 :
             exog  =  None
         k_trend  =  0
     if  trend  = =  'nc' :
         k_trend  =  0
     return  k_trend, exog
 
 
def  _check_estimable(nobs, n_params):
     if  nobs < =  n_params:
         raise  ValueError( "Insufficient degrees of freedom to estimate" )
 
 
class  ARMA(tsbase.TimeSeriesModel):
 
     __doc__  =  tsbase._tsa_doc  %  { "model"  : _arma_model,
                                  "params"  : _arma_params,  "extra_params"  : "",
                                  "extra_sections"  : _armax_notes  %
                                  { "Model"  "ARMA" }}
 
     def  __init__( self , endog, order, exog = None , dates = None , freq = None ,
                  missing = 'none' ):
         super (ARMA,  self ).__init__(endog, exog, dates, freq, missing = missing)
         exog  =  self .data.exog   # get it after it's gone through processing
         _check_estimable( len ( self .endog),  sum (order))
         self .k_ar  =  k_ar  =  order[ 0 ]
         self .k_ma  =  k_ma  =  order[ 1 ]
         self .k_lags  =  max (k_ar, k_ma + 1 )
         self .constant  =  0  #Added by me
         if  exog  is  not  None :
             if  exog.ndim  = =  1 :
                 exog  =  exog[:,  None ]
             k_exog  =  exog.shape[ 1 ]   # number of exog. variables excl. const
         else :
             k_exog  =  0
         self .k_exog  =  k_exog
 
     def  _fit_start_params_hr( self , order):
         """
         Get starting parameters for fit.
 
         Parameters
         ----------
         order : iterable
             (p,q,k) - AR lags, MA lags, and number of exogenous variables
             including the constant.
 
         Returns
         -------
         start_params : array
             A first guess at the starting parameters.
 
         Notes
         -----
         If necessary, fits an AR process with the laglength selected according
         to best BIC.  Obtain the residuals.  Then fit an ARMA(p,q) model via
         OLS using these residuals for a first approximation.  Uses a separate
         OLS regression to find the coefficients of exogenous variables.
 
         References
         ----------
         Hannan, E.J. and Rissanen, J.  1982.  "Recursive estimation of mixed
             autoregressive-moving average order."  `Biometrika`.  69.1.
         """
         p, q, k  =  order
         start_params  =  zeros((p + q + k))
         endog  =  self .endog.copy()   # copy because overwritten
         exog  =  self .exog
         if  k ! =  0 :
             ols_params  =  GLS(endog, exog).fit().params
             start_params[:k]  =  ols_params
             endog  - =  np.dot(exog, ols_params).squeeze()
         if  q ! =  0 :
             if  p ! =  0 :
                 # make sure we don't run into small data problems in AR fit
                 nobs  =  len (endog)
                 maxlag  =  int ( round ( 12 * (nobs / 100. ) * * ( 1 / 4. )))
                 if  maxlag > =  nobs:
                     maxlag  =  nobs  -  1
                 armod  =  AR(endog).fit(ic = 'bic' , trend = 'nc' , maxlag = maxlag)
                 arcoefs_tmp  =  armod.params
                 p_tmp  =  armod.k_ar
                 # it's possible in small samples that optimal lag-order
                 # doesn't leave enough obs. No consistent way to fix.
                 if  p_tmp  +  q > =  len (endog):
                     raise  ValueError( "Proper starting parameters cannot"
                                      " be found for this order with this "
                                      "number of observations. Use the "
                                      "start_params argument." )
                 resid  =  endog[p_tmp:]  -  np.dot(lagmat(endog, p_tmp,
                                                       trim = 'both' ),
                                                arcoefs_tmp)
                 if  p < p_tmp  +  q:
                     endog_start  =  p_tmp  +  -  p
                     resid_start  =  0
                 else :
                     endog_start  =  0
                     resid_start  =  -  p_tmp  -  q
                 lag_endog  =  lagmat(endog, p,  'both' )[endog_start:]
                 lag_resid  =  lagmat(resid, q,  'both' )[resid_start:]
                 # stack ar lags and resids
                 =  np.column_stack((lag_endog, lag_resid))
                 coefs  =  GLS(endog[ max (p_tmp  +  q, p):], X).fit().params
                 start_params[k:k + p + q]  =  coefs
             else :
                 start_params[k + p:k + p + q]  =  yule_walker(endog, order = q)[ 0 ]
         if  = =  0  and  p ! =  0 :
             arcoefs  =  yule_walker(endog, order = p)[ 0 ]
             start_params[k:k + p]  =  arcoefs
 
         # check AR coefficients
         if  and  not  np. all (np. abs (np.roots(np.r_[ 1 - start_params[k:k  +  p]]
                                             )) <  1 ):
             raise  ValueError( "The computed initial AR coefficients are not "
                              "stationary\nYou should induce stationarity, "
                              "choose a different model order, or you can\n"
                              "pass your own start_params." )
         # check MA coefficients
         elif  and  not  np. all (np. abs (np.roots(np.r_[ 1 , start_params[k  +  p:]]
                                               )) <  1 ):
             return  np.zeros( len (start_params))    #modified by me
             raise  ValueError( "The computed initial MA coefficients are not "
                              "invertible\nYou should induce invertibility, "
                              "choose a different model order, or you can\n"
                              "pass your own start_params." )
 
         # check MA coefficients
         # print start_params
         return  start_params
 
     def  _fit_start_params( self , order, method):
         if  method ! =  'css-mle' :   # use Hannan-Rissanen to get start params
             start_params  =  self ._fit_start_params_hr(order)
         else :   # use CSS to get start params
             func  =  lambda  params:  - self .loglike_css(params)
             #start_params = [.1]*(k_ar+k_ma+k_exog) # different one for k?
             start_params  =  self ._fit_start_params_hr(order)
             if  self .transparams:
                 start_params  =  self ._invtransparams(start_params)
             bounds  =  [( None ,) * 2 ] * sum (order)
             mlefit  =  optimize.fmin_l_bfgs_b(func, start_params,
                                             approx_grad = True , m = 12 ,
                                             pgtol = 1e - 7 , factr = 1e3 ,
                                             bounds = bounds, iprint = - 1 )
             start_params  =  self ._transparams(mlefit[ 0 ])
         return  start_params
 
     def  score( self , params):
         """
         Compute the score function at params.
 
         Notes
         -----
         This is a numerical approximation.
         """
         return  approx_fprime_cs(params,  self .loglike, args = ( False ,))
 
     def  hessian( self , params):
         """
         Compute the Hessian at params,
 
         Notes
         -----
         This is a numerical approximation.
         """
         return  approx_hess_cs(params,  self .loglike, args = ( False ,))
 
     def  _transparams( self , params):
         """
         Transforms params to induce stationarity/invertability.
 
         Reference
         ---------
         Jones(1980)
         """
         k_ar, k_ma  =  self .k_ar,  self .k_ma
         =  self .k_exog  +  self .k_trend
         newparams  =  np.zeros_like(params)
 
         # just copy exogenous parameters
         if  k ! =  0 :
             newparams[:k]  =  params[:k]
 
         # AR Coeffs
         if  k_ar ! =  0 :
             newparams[k:k + k_ar]  =  _ar_transparams(params[k:k + k_ar].copy())
 
         # MA Coeffs
         if  k_ma ! =  0 :
             newparams[k + k_ar:]  =  _ma_transparams(params[k + k_ar:].copy())
         return  newparams
 
     def  _invtransparams( self , start_params):
         """
         Inverse of the Jones reparameterization
         """
         k_ar, k_ma  =  self .k_ar,  self .k_ma
         =  self .k_exog  +  self .k_trend
         newparams  =  start_params.copy()
         arcoefs  =  newparams[k:k + k_ar]
         macoefs  =  newparams[k + k_ar:]
         # AR coeffs
         if  k_ar ! =  0 :
             newparams[k:k + k_ar]  =  _ar_invtransparams(arcoefs)
 
         # MA coeffs
         if  k_ma ! =  0 :
             newparams[k + k_ar:k + k_ar + k_ma]  =  _ma_invtransparams(macoefs)
         return  newparams
 
     def  _get_predict_start( self , start, dynamic):
         # do some defaults
         method  =  getattr ( self 'method' 'mle' )
         k_ar  =  getattr ( self 'k_ar' 0 )
         k_diff  =  getattr ( self 'k_diff' 0 )
         if  start  is  None :
             if  'mle'  in  method  and  not  dynamic:
                 start  =  0
             else :
                 start  =  k_ar
             self ._set_predict_start_date(start)   # else it's done in super
         elif  isinstance (start,  int ):
             start  =  super (ARMA,  self )._get_predict_start(start)
         else :   # should be on a date
             #elif 'mle' not in method or dynamic: # should be on a date
             start  =  _validate(start, k_ar, k_diff,  self .data.dates,
                               method)
             start  =  super (ARMA,  self )._get_predict_start(start)
         _check_arima_start(start, k_ar, k_diff, method, dynamic)
         return  start
 
     def  _get_predict_end( self , end, dynamic = False ):
         # pass through so predict works for ARIMA and ARMA
         return  super (ARMA,  self )._get_predict_end(end)
 
     def  geterrors( self , params):
         """
         Get the errors of the ARMA process.
 
         Parameters
         ----------
         params : array-like
             The fitted ARMA parameters
         order : array-like
             3 item iterable, with the number of AR, MA, and exogenous
             parameters, including the trend
         """
 
         #start = self._get_predict_start(start) # will be an index of a date
         #end, out_of_sample = self._get_predict_end(end)
         params  =  np.asarray(params)
         k_ar, k_ma  =  self .k_ar,  self .k_ma
         =  self .k_exog  +  self .k_trend
 
         method  =  getattr ( self 'method' 'mle' )
         if  'mle'  in  method:   # use KalmanFilter to get errors
             (y, k, nobs, k_ar, k_ma, k_lags, newparams, Z_mat, m, R_mat,
              T_mat, paramsdtype)  =  KalmanFilter._init_kalman_state(params,
                                                                    self )
 
             errors  =  KalmanFilter.geterrors(y, k, k_ar, k_ma, k_lags, nobs,
                                             Z_mat, m, R_mat, T_mat,
                                             paramsdtype)
             if  isinstance (errors,  tuple ):
                 errors  =  errors[ 0 ]   # non-cython version returns a tuple
         else :   # use scipy.signal.lfilter
             =  self .endog.copy()
             =  self .k_exog  +  self .k_trend
             if  k >  0 :
                 - =  dot( self .exog, params[:k])
 
             k_ar  =  self .k_ar
             k_ma  =  self .k_ma
 
             (trendparams, exparams,
              arparams, maparams)  =  _unpack_params(params, (k_ar, k_ma),
                                                   self .k_trend,  self .k_exog,
                                                   reverse = False )
             b, a  =  np.r_[ 1 - arparams], np.r_[ 1 , maparams]
             zi  =  zeros(( max (k_ar, k_ma)))
             for  in  range (k_ar):
                 zi[i]  =  sum ( - b[:i + 1 ][:: - 1 ] * y[:i + 1 ])
             =  lfilter(b, a, y, zi = zi)
             errors  =  e[ 0 ][k_ar:]
         return  errors.squeeze()
 
     def  predict( self , params, start = None , end = None , exog = None , dynamic = False ):
         method  =  getattr ( self 'method' 'mle' )   # don't assume fit
         #params = np.asarray(params)
 
         # will return an index of a date
         start  =  self ._get_predict_start(start, dynamic)
         end, out_of_sample  =  self ._get_predict_end(end, dynamic)
         if  out_of_sample  and  (exog  is  None  and  self .k_exog >  0 ):
             raise  ValueError( "You must provide exog for ARMAX" )
 
         endog  =  self .endog
         resid  =  self .geterrors(params)
         k_ar  =  self .k_ar
 
         if  out_of_sample ! =  0  and  self .k_exog >  0 :
             if  self .k_exog  = =  1  and  exog.ndim  = =  1 :
                 exog  =  exog[:,  None ]
                 # we need the last k_ar exog for the lag-polynomial
             if  self .k_exog >  0  and  k_ar >  0 :
                 # need the last k_ar exog for the lag-polynomial
                 exog  =  np.vstack(( self .exog[ - k_ar:,  self .k_trend:], exog))
 
         if  dynamic:
             #TODO: now that predict does dynamic in-sample it should
             # also return error estimates and confidence intervals
             # but how? len(endog) is not tot_obs
             out_of_sample  + =  end  -  start  +  1
             pr, ct  =  _arma_predict_out_of_sample(params, out_of_sample, resid,
                                                k_ar,  self .k_ma,  self .k_trend,
                                                self .k_exog, endog, exog,
                                                start, method)
             self .constant  =  ct
             return  pr
 
         predictedvalues  =  _arma_predict_in_sample(start, end, endog, resid,
                                                   k_ar, method)
         if  out_of_sample:
             forecastvalues, ct  =  _arma_predict_out_of_sample(params, out_of_sample,
                                                          resid, k_ar,
                                                          self .k_ma,
                                                          self .k_trend,
                                                          self .k_exog, endog,
                                                          exog, method = method)
             self .constant  =  ct
             predictedvalues  =  np.r_[predictedvalues, forecastvalues]
         return  predictedvalues
     predict.__doc__  =  _arma_predict
 
     def  loglike( self , params, set_sigma2 = True ):
         """
         Compute the log-likelihood for ARMA(p,q) model
 
         Notes
         -----
         Likelihood used depends on the method set in fit
         """
         method  =  self .method
         if  method  in  [ 'mle' 'css-mle' ]:
             return  self .loglike_kalman(params, set_sigma2)
         elif  method  = =  'css' :
             return  self .loglike_css(params, set_sigma2)
         else :
             raise  ValueError( "Method %s not understood"  %  method)
 
     def  loglike_kalman( self , params, set_sigma2 = True ):
         """
         Compute exact loglikelihood for ARMA(p,q) model by the Kalman Filter.
         """
         return  KalmanFilter.loglike(params,  self , set_sigma2)
 
     def  loglike_css( self , params, set_sigma2 = True ):
         """
         Conditional Sum of Squares likelihood function.
         """
         k_ar  =  self .k_ar
         k_ma  =  self .k_ma
         =  self .k_exog  +  self .k_trend
         =  self .endog.copy().astype(params.dtype)
         nobs  =  self .nobs
         # how to handle if empty?
         if  self .transparams:
             newparams  =  self ._transparams(params)
         else :
             newparams  =  params
         if  k >  0 :
             - =  dot( self .exog, newparams[:k])
         # the order of p determines how many zeros errors to set for lfilter
         b, a  =  np.r_[ 1 - newparams[k:k  +  k_ar]], np.r_[ 1 , newparams[k  +  k_ar:]]
         zi  =  np.zeros(( max (k_ar, k_ma)), dtype = params.dtype)
         for  in  range (k_ar):
             zi[i]  =  sum ( - b[:i  +  1 ][:: - 1 *  y[:i  +  1 ])
         errors  =  lfilter(b, a, y, zi = zi)[ 0 ][k_ar:]
 
         ssr  =  np.dot(errors, errors)
         sigma2  =  ssr / nobs
         if  set_sigma2:
             self .sigma2  =  sigma2
         llf  =  - nobs / 2. * (log( 2 * pi)  +  log(sigma2))  -  ssr / ( 2 * sigma2)
         return  llf
 
     def  fit( self , start_params = None , trend = 'c' , method = "css-mle" ,
             transparams = True , solver = 'lbfgs' , maxiter = 50 , full_output = 1 ,
             disp = 5 , callback = None * * kwargs):
         """
         Fits ARMA(p,q) model using exact maximum likelihood via Kalman filter.
 
         Parameters
         ----------
         start_params : array-like, optional
             Starting parameters for ARMA(p,q). If None, the default is given
             by ARMA._fit_start_params.  See there for more information.
         transparams : bool, optional
             Whehter or not to transform the parameters to ensure stationarity.
             Uses the transformation suggested in Jones (1980).  If False,
             no checking for stationarity or invertibility is done.
         method : str {'css-mle','mle','css'}
             This is the loglikelihood to maximize.  If "css-mle", the
             conditional sum of squares likelihood is maximized and its values
             are used as starting values for the computation of the exact
             likelihood via the Kalman filter.  If "mle", the exact likelihood
             is maximized via the Kalman Filter.  If "css" the conditional sum
             of squares likelihood is maximized.  All three methods use
             `start_params` as starting parameters.  See above for more
             information.
         trend : str {'c','nc'}
             Whether to include a constant or not.  'c' includes constant,
             'nc' no constant.
         solver : str or None, optional
             Solver to be used.  The default is 'lbfgs' (limited memory
             Broyden-Fletcher-Goldfarb-Shanno).  Other choices are 'bfgs',
             'newton' (Newton-Raphson), 'nm' (Nelder-Mead), 'cg' -
             (conjugate gradient), 'ncg' (non-conjugate gradient), and
             'powell'. By default, the limited memory BFGS uses m=12 to
             approximate the Hessian, projected gradient tolerance of 1e-8 and
             factr = 1e2. You can change these by using kwargs.
         maxiter : int, optional
             The maximum number of function evaluations. Default is 50.
         tol : float
             The convergence tolerance.  Default is 1e-08.
         full_output : bool, optional
             If True, all output from solver will be available in
             the Results object's mle_retvals attribute.  Output is dependent
             on the solver.  See Notes for more information.
         disp : bool, optional
             If True, convergence information is printed.  For the default
             l_bfgs_b solver, disp controls the frequency of the output during
             the iterations. disp < 0 means no output in this case.
         callback : function, optional
             Called after each iteration as callback(xk) where xk is the current
             parameter vector.
         kwargs
             See Notes for keyword arguments that can be passed to fit.
 
         Returns
         -------
         statsmodels.tsa.arima_model.ARMAResults class
 
         See also
         --------
         statsmodels.base.model.LikelihoodModel.fit : for more information
             on using the solvers.
         ARMAResults : results class returned by fit
 
         Notes
         ------
         If fit by 'mle', it is assumed for the Kalman Filter that the initial
         unkown state is zero, and that the inital variance is
         P = dot(inv(identity(m**2)-kron(T,T)),dot(R,R.T).ravel('F')).reshape(r,
         r, order = 'F')
 
         """
         k_ar  =  self .k_ar
         k_ma  =  self .k_ma
 
         # enforce invertibility
         self .transparams  =  transparams
 
         endog, exog  =  self .endog,  self .exog
         k_exog  =  self .k_exog
         self .nobs  =  len (endog)   # this is overwritten if method is 'css'
 
         # (re)set trend and handle exogenous variables
         # always pass original exog
         k_trend, exog  =  _make_arma_exog(endog,  self .exog, trend)
 
         # Check has something to estimate
         if  k_ar  = =  0  and  k_ma  = =  0  and  k_trend  = =  0  and  k_exog  = =  0 :
             raise  ValueError( "Estimation requires the inclusion of least one "
                          "AR term, MA term, a constant or an exogenous "
                          "variable." )
 
         # check again now that we know the trend
         _check_estimable( len (endog), k_ar  +  k_ma  +  k_exog  +  k_trend)
 
         self .k_trend  =  k_trend
         self .exog  =  exog     # overwrites original exog from __init__
 
         # (re)set names for this model
         self .exog_names  =  _make_arma_names( self .data, k_trend, (k_ar, k_ma),
                                            self .exog_names)
         =  k_trend  +  k_exog
 
         # choose objective function
         if  k_ma  = =  0  and  k_ar  = =  0 :
             method  =  "css"   # Always CSS when no AR or MA terms
 
         self .method  =  method  =  method.lower()
 
         # adjust nobs for css
         if  method  = =  'css' :
             self .nobs  =  len ( self .endog)  -  k_ar
 
         if  start_params  is  not  None :
             start_params  =  np.asarray(start_params)
 
         else :   # estimate starting parameters
             start_params  =  self ._fit_start_params((k_ar, k_ma, k), method)
 
         if  transparams:   # transform initial parameters to ensure invertibility
             start_params  =  self ._invtransparams(start_params)
 
         if  solver  = =  'lbfgs' :
             kwargs.setdefault( 'pgtol' 1e - 8 )
             kwargs.setdefault( 'factr' 1e2 )
             kwargs.setdefault( 'm' 12 )
             kwargs.setdefault( 'approx_grad' True )
         mlefit  =  super (ARMA,  self ).fit(start_params, method = solver,
                                        maxiter = maxiter,
                                        full_output = full_output, disp = disp,
                                        callback = callback,  * * kwargs)
         params  =  mlefit.params
 
         if  transparams:   # transform parameters back
             params  =  self ._transparams(params)
 
         self .transparams  =  False   # so methods don't expect transf.
 
         normalized_cov_params  =  None   # TODO: fix this
         armafit  =  ARMAResults( self , params, normalized_cov_params)
         armafit.mle_retvals  =  mlefit.mle_retvals
         armafit.mle_settings  =  mlefit.mle_settings
         armafit.mlefit  =  mlefit
         return  ARMAResultsWrapper(armafit)
 
 
#NOTE: the length of endog changes when we give a difference to fit
#so model methods are not the same on unfit models as fit ones
#starting to think that order of model should be put in instantiation...
class  ARIMA(ARMA):
 
     __doc__  =  tsbase._tsa_doc  %  { "model"  : _arima_model,
                                  "params"  : _arima_params,  "extra_params"  : "",
                                  "extra_sections"  : _armax_notes  %
                                  { "Model"  "ARIMA" }}
 
     def  __new__( cls , endog, order, exog = None , dates = None , freq = None ,
                 missing = 'none' ):
         p, d, q  =  order
         if  = =  0 :   # then we just use an ARMA model
             return  ARMA(endog, (p, q), exog, dates, freq, missing)
         else :
             mod  =  super (ARIMA,  cls ).__new__( cls )
             mod.__init__(endog, order, exog, dates, freq, missing)
             return  mod
 
     def  __init__( self , endog, order, exog = None , dates = None , freq = None ,
                  missing = 'none' ):
         p, d, q  =  order
         if  d >  2 :
             #NOTE: to make more general, need to address the d == 2 stuff
             # in the predict method
             raise  ValueError( "d > 2 is not supported" )
         super (ARIMA,  self ).__init__(endog, (p, q), exog, dates, freq, missing)
         self .k_diff  =  d
         self ._first_unintegrate  =  unintegrate_levels( self .endog[:d], d)
         self .endog  =  np.diff( self .endog, n = d)
         #NOTE: will check in ARMA but check again since differenced now
         _check_estimable( len ( self .endog), p + q)
         if  exog  is  not  None :
             self .exog  =  self .exog[d:]
         if  = =  1 :
             self .data.ynames  =  'D.'  +  self .endog_names
         else :
             self .data.ynames  =  'D{0:d}.' . format (d)  +  self .endog_names
         # what about exog, should we difference it automatically before
         # super call?
 
     def  _get_predict_start( self , start, dynamic):
         """
         """
         #TODO: remove all these getattr and move order specification to
         # class constructor
         k_diff  =  getattr ( self 'k_diff' 0 )
         method  =  getattr ( self 'method' 'mle' )
         k_ar  =  getattr ( self 'k_ar' 0 )
         if  start  is  None :
             if  'mle'  in  method  and  not  dynamic:
                 start  =  0
             else :
                 start  =  k_ar
         elif  isinstance (start,  int ):
                 start  - =  k_diff
                 try :   # catch when given an integer outside of dates index
                     start  =  super (ARIMA,  self )._get_predict_start(start,
                                                                   dynamic)
                 except  IndexError:
                     raise  ValueError( "start must be in series. "
                                      "got %d"  %  (start  +  k_diff))
         else :   # received a date
             start  =  _validate(start, k_ar, k_diff,  self .data.dates,
                               method)
             start  =  super (ARIMA,  self )._get_predict_start(start, dynamic)
         # reset date for k_diff adjustment
         self ._set_predict_start_date(start  +  k_diff)
         return  start
 
     def  _get_predict_end( self , end, dynamic = False ):
         """
         Returns last index to be forecast of the differenced array.
         Handling of inclusiveness should be done in the predict function.
         """
         end, out_of_sample  =  super (ARIMA,  self )._get_predict_end(end, dynamic)
         if  'mle'  not  in  self .method  and  not  dynamic:
             end  - =  self .k_ar
 
         return  end  -  self .k_diff, out_of_sample
 
     def  fit( self , start_params = None , trend = 'c' , method = "css-mle" ,
             transparams = True , solver = 'lbfgs' , maxiter = 50 , full_output = 1 ,
             disp = 5 , callback = None * * kwargs):
         """
         Fits ARIMA(p,d,q) model by exact maximum likelihood via Kalman filter.
 
         Parameters
         ----------
         start_params : array-like, optional
             Starting parameters for ARMA(p,q).  If None, the default is given
             by ARMA._fit_start_params.  See there for more information.
         transparams : bool, optional
             Whehter or not to transform the parameters to ensure stationarity.
             Uses the transformation suggested in Jones (1980).  If False,
             no checking for stationarity or invertibility is done.
         method : str {'css-mle','mle','css'}
             This is the loglikelihood to maximize.  If "css-mle", the
             conditional sum of squares likelihood is maximized and its values
             are used as starting values for the computation of the exact
             likelihood via the Kalman filter.  If "mle", the exact likelihood
             is maximized via the Kalman Filter.  If "css" the conditional sum
             of squares likelihood is maximized.  All three methods use
             `start_params` as starting parameters.  See above for more
             information.
         trend : str {'c','nc'}
             Whether to include a constant or not.  'c' includes constant,
             'nc' no constant.
         solver : str or None, optional
             Solver to be used.  The default is 'lbfgs' (limited memory
             Broyden-Fletcher-Goldfarb-Shanno).  Other choices are 'bfgs',
             'newton' (Newton-Raphson), 'nm' (Nelder-Mead), 'cg' -
             (conjugate gradient), 'ncg' (non-conjugate gradient), and
             'powell'. By default, the limited memory BFGS uses m=12 to
             approximate the Hessian, projected gradient tolerance of 1e-8 and
             factr = 1e2. You can change these by using kwargs.
         maxiter : int, optional
             The maximum number of function evaluations. Default is 50.
         tol : float
             The convergence tolerance.  Default is 1e-08.
         full_output : bool, optional
             If True, all output from solver will be available in
             the Results object's mle_retvals attribute.  Output is dependent
             on the solver.  See Notes for more information.
         disp : bool, optional
             If True, convergence information is printed.  For the default
             l_bfgs_b solver, disp controls the frequency of the output during
             the iterations. disp < 0 means no output in this case.
         callback : function, optional
             Called after each iteration as callback(xk) where xk is the current
             parameter vector.
         kwargs
             See Notes for keyword arguments that can be passed to fit.
 
         Returns
         -------
         `statsmodels.tsa.arima.ARIMAResults` class
 
         See also
         --------
         statsmodels.base.model.LikelihoodModel.fit : for more information
             on using the solvers.
         ARIMAResults : results class returned by fit
 
         Notes
         ------
         If fit by 'mle', it is assumed for the Kalman Filter that the initial
         unkown state is zero, and that the inital variance is
         P = dot(inv(identity(m**2)-kron(T,T)),dot(R,R.T).ravel('F')).reshape(r,
         r, order = 'F')
 
         """
         arima_fit  =  super (ARIMA,  self ).fit(start_params, trend,
                                            method, transparams, solver,
                                            maxiter, full_output, disp,
                                            callback,  * * kwargs)
         normalized_cov_params  =  None   # TODO: fix this?
         arima_fit  =  ARIMAResults( self , arima_fit._results.params,
                                  normalized_cov_params)
         arima_fit.k_diff  =  self .k_diff
         return  ARIMAResultsWrapper(arima_fit)
 
     def  predict( self , params, start = None , end = None , exog = None , typ = 'linear' ,
                 dynamic = False ):
         # go ahead and convert to an index for easier checking
         if  isinstance (start, (string_types, datetime)):
             start  =  _index_date(start,  self .data.dates)
         if  typ  = =  'linear' :
             if  not  dynamic  or  (start ! =  self .k_ar  +  self .k_diff  and
                                start  is  not  None ):
                 return  super (ARIMA,  self ).predict(params, start, end, exog,
                                                   dynamic)
             else :
                 # need to assume pre-sample residuals are zero
                 # do this by a hack
                 =  self .k_ma
                 self .k_ma  =  0
                 predictedvalues  =  super (ARIMA,  self ).predict(params, start,
                                                              end, exog,
                                                              dynamic)
                 self .k_ma  =  q
                 return  predictedvalues
         elif  typ  = =  'levels' :
             endog  =  self .data.endog
             if  not  dynamic:
                 predict  =  super (ARIMA,  self ).predict(params, start, end,
                                                      dynamic)
 
                 start  =  self ._get_predict_start(start, dynamic)
                 end, out_of_sample  =  self ._get_predict_end(end)
                 =  self .k_diff
                 if  'mle'  in  self .method:
                     start  + =  -  1   # for case where d == 2
                     end  + =  -  1
                     # add each predicted diff to lagged endog
                     if  out_of_sample:
                         fv  =  predict[: - out_of_sample]  +  endog[start:end + 1 ]
                         if  = =  2 :   #TODO: make a general solution to this
                             fv  + =  np.diff(endog[start  -  1 :end  +  1 ])
                         levels  =  unintegrate_levels(endog[ - d:], d)
                         fv  =  np.r_[fv,
                                    unintegrate(predict[ - out_of_sample:],
                                                levels)[d:]]
                     else :
                         fv  =  predict  +  endog[start:end  +  1 ]
                         if  = =  2 :
                             fv  + =  np.diff(endog[start  -  1 :end  +  1 ])
                 else :
                     k_ar  =  self .k_ar
                     if  out_of_sample:
                         fv  =  (predict[: - out_of_sample]  +
                               endog[ max (start,  self .k_ar - 1 ):end + k_ar + 1 ])
                         if  = =  2 :
                             fv  + =  np.diff(endog[start  -  1 :end  +  1 ])
                         levels  =  unintegrate_levels(endog[ - d:], d)
                         fv  =  np.r_[fv,
                                    unintegrate(predict[ - out_of_sample:],
                                                levels)[d:]]
                     else :
                         fv  =  predict  +  endog[ max (start, k_ar):end + k_ar + 1 ]
                         if  = =  2 :
                             fv  + =  np.diff(endog[start  -  1 :end  +  1 ])
             else :
                 #IFF we need to use pre-sample values assume pre-sample
                 # residuals are zero, do this by a hack
                 if  start  = =  self .k_ar  +  self .k_diff  or  start  is  None :
                     # do the first k_diff+1 separately
                     =  self .k_ar
                     =  self .k_ma
                     k_exog  =  self .k_exog
                     k_trend  =  self .k_trend
                     k_diff  =  self .k_diff
                     (trendparam, exparams,
                      arparams, maparams)  =  _unpack_params(params, (p, q),
                                                           k_trend,
                                                           k_exog,
                                                           reverse = True )
                     # this is the hack
                     self .k_ma  =  0
 
                     predict  =  super (ARIMA,  self ).predict(params, start, end,
                                                          exog, dynamic)
                     if  not  start:
                         start  =  self ._get_predict_start(start, dynamic)
                         start  + =  k_diff
                     self .k_ma  =  q
                     return  endog[start - 1 +  np.cumsum(predict)
                 else :
                     predict  =  super (ARIMA,  self ).predict(params, start, end,
                                                          exog, dynamic)
                     return  endog[start - 1 +  np.cumsum(predict)
             return  fv
 
         else :   # pragma : no cover
             raise  ValueError( "typ %s not understood"  %  typ)
 
     predict.__doc__  =  _arima_predict
 
 
class  ARMAResults(tsbase.TimeSeriesModelResults):
     """
     Class to hold results from fitting an ARMA model.
 
     Parameters
     ----------
     model : ARMA instance
         The fitted model instance
     params : array
         Fitted parameters
     normalized_cov_params : array, optional
         The normalized variance covariance matrix
     scale : float, optional
         Optional argument to scale the variance covariance matrix.
 
     Returns
     --------
     **Attributes**
 
     aic : float
         Akaike Information Criterion
         :math:`-2*llf+2* df_model`
         where `df_model` includes all AR parameters, MA parameters, constant
         terms parameters on constant terms and the variance.
     arparams : array
         The parameters associated with the AR coefficients in the model.
     arroots : array
         The roots of the AR coefficients are the solution to
         (1 - arparams[0]*z - arparams[1]*z**2 -...- arparams[p-1]*z**k_ar) = 0
         Stability requires that the roots in modulus lie outside the unit
         circle.
     bic : float
         Bayes Information Criterion
         -2*llf + log(nobs)*df_model
         Where if the model is fit using conditional sum of squares, the
         number of observations `nobs` does not include the `p` pre-sample
         observations.
     bse : array
         The standard errors of the parameters. These are computed using the
         numerical Hessian.
     df_model : array
         The model degrees of freedom = `k_exog` + `k_trend` + `k_ar` + `k_ma`
     df_resid : array
         The residual degrees of freedom = `nobs` - `df_model`
     fittedvalues : array
         The predicted values of the model.
     hqic : float
         Hannan-Quinn Information Criterion
         -2*llf + 2*(`df_model`)*log(log(nobs))
         Like `bic` if the model is fit using conditional sum of squares then
         the `k_ar` pre-sample observations are not counted in `nobs`.
     k_ar : int
         The number of AR coefficients in the model.
     k_exog : int
         The number of exogenous variables included in the model. Does not
         include the constant.
     k_ma : int
         The number of MA coefficients.
     k_trend : int
         This is 0 for no constant or 1 if a constant is included.
     llf : float
         The value of the log-likelihood function evaluated at `params`.
     maparams : array
         The value of the moving average coefficients.
     maroots : array
         The roots of the MA coefficients are the solution to
         (1 + maparams[0]*z + maparams[1]*z**2 + ... + maparams[q-1]*z**q) = 0
         Stability requires that the roots in modules lie outside the unit
         circle.
     model : ARMA instance
         A reference to the model that was fit.
     nobs : float
         The number of observations used to fit the model. If the model is fit
         using exact maximum likelihood this is equal to the total number of
         observations, `n_totobs`. If the model is fit using conditional
         maximum likelihood this is equal to `n_totobs` - `k_ar`.
     n_totobs : float
         The total number of observations for `endog`. This includes all
         observations, even pre-sample values if the model is fit using `css`.
     params : array
         The parameters of the model. The order of variables is the trend
         coefficients and the `k_exog` exognous coefficients, then the
         `k_ar` AR coefficients, and finally the `k_ma` MA coefficients.
     pvalues : array
         The p-values associated with the t-values of the coefficients. Note
         that the coefficients are assumed to have a Student's T distribution.
     resid : array
         The model residuals. If the model is fit using 'mle' then the
         residuals are created via the Kalman Filter. If the model is fit
         using 'css' then the residuals are obtained via `scipy.signal.lfilter`
         adjusted such that the first `k_ma` residuals are zero. These zero
         residuals are not returned.
     scale : float
         This is currently set to 1.0 and not used by the model or its results.
     sigma2 : float
         The variance of the residuals. If the model is fit by 'css',
         sigma2 = ssr/nobs, where ssr is the sum of squared residuals. If
         the model is fit by 'mle', then sigma2 = 1/nobs * sum(v**2 / F)
         where v is the one-step forecast error and F is the forecast error
         variance. See `nobs` for the difference in definitions depending on the
         fit.
     """
     _cache  =  {}
 
     #TODO: use this for docstring when we fix nobs issue
 
     def  __init__( self , model, params, normalized_cov_params = None , scale = 1. ):
         super (ARMAResults,  self ).__init__(model, params, normalized_cov_params,
                                           scale)
         self .sigma2  =  model.sigma2
         nobs  =  model.nobs
         self .nobs  =  nobs
         k_exog  =  model.k_exog
         self .k_exog  =  k_exog
         k_trend  =  model.k_trend
         self .k_trend  =  k_trend
         k_ar  =  model.k_ar
         self .k_ar  =  k_ar
         self .n_totobs  =  len (model.endog)
         k_ma  =  model.k_ma
         self .k_ma  =  k_ma
         df_model  =  k_exog  +  k_trend  +  k_ar  +  k_ma
         self ._ic_df_model  =  df_model  +  1
         self .df_model  =  df_model
         self .df_resid  =  self .nobs  -  df_model
         self ._cache  =  resettable_cache()
         self .constant  =  0   #Added by me
 
     @cache_readonly
     def  arroots( self ):
         return  np.roots(np.r_[ 1 - self .arparams]) * * - 1
 
     @cache_readonly
     def  maroots( self ):
         return  np.roots(np.r_[ 1 self .maparams]) * * - 1
 
     @cache_readonly
     def  arfreq( self ):
         r """
         Returns the frequency of the AR roots.
 
         This is the solution, x, to z = abs(z)*exp(2j*np.pi*x) where z are the
         roots.
         """
         =  self .arroots
         if  not  z.size:
             return
         return  np.arctan2(z.imag, z.real)  /  ( 2 * pi)
 
     @cache_readonly
     def  mafreq( self ):
         r """
         Returns the frequency of the MA roots.
 
         This is the solution, x, to z = abs(z)*exp(2j*np.pi*x) where z are the
         roots.
         """
         =  self .maroots
         if  not  z.size:
             return
         return  np.arctan2(z.imag, z.real)  /  ( 2 * pi)
 
     @cache_readonly
     def  arparams( self ):
         =  self .k_exog  +  self .k_trend
         return  self .params[k:k + self .k_ar]
 
     @cache_readonly
     def  maparams( self ):
         =  self .k_exog  +  self .k_trend
         k_ar  =  self .k_ar
         return  self .params[k + k_ar:]
 
     @cache_readonly
     def  llf( self ):
         return  self .model.loglike( self .params)
 
     @cache_readonly
     def  bse( self ):
         params  =  self .params
         hess  =  self .model.hessian(params)
         if  len (params)  = =  1 :   # can't take an inverse, ensure 1d
             return  np.sqrt( - 1. / hess[ 0 ])
         return  np.sqrt(np.diag( - inv(hess)))
 
     def  cov_params( self ):   # add scale argument?
         params  =  self .params
         hess  =  self .model.hessian(params)
         return  - inv(hess)
 
     @cache_readonly
     def  aic( self ):
         return  - 2  *  self .llf  +  2  *  self ._ic_df_model
 
     @cache_readonly
     def  bic( self ):
         nobs  =  self .nobs
         return  - 2  *  self .llf  +  np.log(nobs)  *  self ._ic_df_model
 
     @cache_readonly
     def  hqic( self ):
         nobs  =  self .nobs
         return  - 2  *  self .llf  +  2  *  np.log(np.log(nobs))  *  self ._ic_df_model
 
     @cache_readonly
     def  fittedvalues( self ):
         model  =  self .model
         endog  =  model.endog.copy()
         k_ar  =  self .k_ar
         exog  =  model.exog   # this is a copy
         if  exog  is  not  None :
             if  model.method  = =  "css"  and  k_ar >  0 :
                 exog  =  exog[k_ar:]
         if  model.method  = =  "css"  and  k_ar >  0 :
             endog  =  endog[k_ar:]
         fv  =  endog  -  self .resid
         # add deterministic part back in
         #k = self.k_exog + self.k_trend
         #TODO: this needs to be commented out for MLE with constant
         #if k != 0:
         #    fv += dot(exog, self.params[:k])
         return  fv
 
     @cache_readonly
     def  resid( self ):
         return  self .model.geterrors( self .params)
 
     @cache_readonly
     def  pvalues( self ):
     #TODO: same for conditional and unconditional?
         df_resid  =  self .df_resid
         return  t.sf(np. abs ( self .tvalues), df_resid)  *  2
 
     def  predict( self , start = None , end = None , exog = None , dynamic = False ):
         return  self .model.predict( self .params, start, end, exog, dynamic)
     predict.__doc__  =  _arma_results_predict
 
     def  _forecast_error( self , steps):
         sigma2  =  self .sigma2
         ma_rep  =  arma2ma(np.r_[ 1 - self .arparams],
                          np.r_[ 1 self .maparams], nobs = steps)
 
         fcasterr  =  np.sqrt(sigma2  *  np.cumsum(ma_rep * * 2 ))
         return  fcasterr
 
     def  _forecast_conf_int( self , forecast, fcasterr, alpha):
         const  =  norm.ppf( 1  -  alpha  /  2. )
         conf_int  =  np.c_[forecast  -  const  *  fcasterr,
                          forecast  +  const  *  fcasterr]
 
         return  conf_int
 
     def  forecast( self , steps = 1 , exog = None , alpha = . 05 ):
         """
         Out-of-sample forecasts
 
         Parameters
         ----------
         steps : int
             The number of out of sample forecasts from the end of the
             sample.
         exog : array
             If the model is an ARMAX, you must provide out of sample
             values for the exogenous variables. This should not include
             the constant.
         alpha : float
             The confidence intervals for the forecasts are (1 - alpha) %
 
         Returns
         -------
         forecast : array
             Array of out of sample forecasts
         stderr : array
             Array of the standard error of the forecasts.
         conf_int : array
             2d array of the confidence interval for the forecast
         """
         if  exog  is  not  None :
             #TODO: make a convenience function for this. we're using the
             # pattern elsewhere in the codebase
             exog  =  np.asarray(exog)
             if  self .k_exog  = =  1  and  exog.ndim  = =  1 :
                 exog  =  exog[:,  None ]
             elif  exog.ndim  = =  1 :
                 if  len (exog) ! =  self .k_exog:
                     raise  ValueError( "1d exog given and len(exog) != k_exog" )
                 exog  =  exog[ None , :]
             if  exog.shape[ 0 ] ! =  steps:
                 raise  ValueError( "new exog needed for each step" )
             # prepend in-sample exog observations
             exog  =  np.vstack(( self .model.exog[ - self .k_ar:,  self .k_trend:],
                               exog))
 
         forecast, ct  =  _arma_predict_out_of_sample( self .params,
                                                steps,  self .resid,  self .k_ar,
                                                self .k_ma,  self .k_trend,
                                                self .k_exog,  self .model.endog,
                                                exog, method = self .model.method)
         self .constant  =  ct
 
         # compute the standard errors
         fcasterr  =  self ._forecast_error(steps)
         conf_int  =  self ._forecast_conf_int(forecast, fcasterr, alpha)
 
         return  forecast, fcasterr, conf_int
 
     def  summary( self , alpha = . 05 ):
         """Summarize the Model
 
         Parameters
         ----------
         alpha : float, optional
             Significance level for the confidence intervals.
 
         Returns
         -------
         smry : Summary instance
             This holds the summary table and text, which can be printed or
             converted to various output formats.
 
         See Also
         --------
         statsmodels.iolib.summary.Summary
         """
         from  statsmodels.iolib.summary  import  Summary
         model  =  self .model
         title  =  model.__class__.__name__  +  ' Model Results'
         method  =  model.method
         # get sample TODO: make better sample machinery for estimation
         k_diff  =  getattr ( self 'k_diff' 0 )
         if  'mle'  in  method:
             start  =  k_diff
         else :
             start  =  k_diff  +  self .k_ar
         if  self .data.dates  is  not  None :
             dates  =  self .data.dates
             sample  =  [dates[start].strftime( '%m-%d-%Y' )]
             sample  + =  [ '- '  +  dates[ - 1 ].strftime( '%m-%d-%Y' )]
         else :
             sample  =  str (start)  +  ' - '  +  str ( len ( self .data.orig_endog))
 
         k_ar, k_ma  =  self .k_ar,  self .k_ma
         if  not  k_diff:
             order  =  str ((k_ar, k_ma))
         else :
             order  =  str ((k_ar, k_diff, k_ma))
         top_left  =  [( 'Dep. Variable:' None ),
                     ( 'Model:' , [model.__class__.__name__  +  order]),
                     ( 'Method:' , [method]),
                     ( 'Date:' None ),
                     ( 'Time:' None ),
                     ( 'Sample:' , [sample[ 0 ]]),
                     ('', [sample[ 1 ]])
                     ]
 
         top_right  =  [
                      ( 'No. Observations:' , [ str ( len ( self .model.endog))]),
                      ( 'Log Likelihood' , [ "%#5.3f"  %  self .llf]),
                      ( 'S.D. of innovations' , [ "%#5.3f"  %  self .sigma2 * * . 5 ]),
                      ( 'AIC' , [ "%#5.3f"  %  self .aic]),
                      ( 'BIC' , [ "%#5.3f"  %  self .bic]),
                      ( 'HQIC' , [ "%#5.3f"  %  self .hqic])]
 
         smry  =  Summary()
         smry.add_table_2cols( self , gleft = top_left, gright = top_right,
                              title = title)
         smry.add_table_params( self , alpha = alpha, use_t = False )
 
         # Make the roots table
         from  statsmodels.iolib.table  import  SimpleTable
 
         if  k_ma  and  k_ar:
             arstubs  =  [ "AR.%d"  %  for  in  range ( 1 , k_ar  +  1 )]
             mastubs  =  [ "MA.%d"  %  for  in  range ( 1 , k_ma  +  1 )]
             stubs  =  arstubs  +  mastubs
             roots  =  np.r_[ self .arroots,  self .maroots]
             freq  =  np.r_[ self .arfreq,  self .mafreq]
         elif  k_ma:
             mastubs  =  [ "MA.%d"  %  for  in  range ( 1 , k_ma  +  1 )]
             stubs  =  mastubs
             roots  =  self .maroots
             freq  =  self .mafreq
         elif  k_ar:
             arstubs  =  [ "AR.%d"  %  for  in  range ( 1 , k_ar  +  1 )]
             stubs  =  arstubs
             roots  =  self .arroots
             freq  =  self .arfreq
         else :   # 0,0 model
             stubs  =  []
         if  len (stubs):   # not 0, 0
             modulus  =  np. abs (roots)
             data  =  np.column_stack((roots.real, roots.imag, modulus, freq))
             roots_table  =  SimpleTable(data,
                                       headers = [ '           Real' ,
                                                '         Imaginary' ,
                                                '         Modulus' ,
                                                '        Frequency' ],
                                       title = "Roots" ,
                                       stubs = stubs,
                                       data_fmts = [ "%17.4f" "%+17.4fj" ,
                                                  "%17.4f" "%17.4f" ])
 
             smry.tables.append(roots_table)
         return  smry
 
     def  summary2( self , title = None , alpha = . 05 , float_format = "%.4f" ):
         """Experimental summary function for ARIMA Results
 
         Parameters
         -----------
         title : string, optional
             Title for the top table. If not None, then this replaces the
             default title
         alpha : float
             significance level for the confidence intervals
         float_format: string
             print format for floats in parameters summary
 
         Returns
         -------
         smry : Summary instance
             This holds the summary table and text, which can be printed or
             converted to various output formats.
 
         See Also
         --------
         statsmodels.iolib.summary2.Summary : class to hold summary
             results
 
         """
         from  pandas  import  DataFrame
         # get sample TODO: make better sample machinery for estimation
         k_diff  =  getattr ( self 'k_diff' 0 )
         if  'mle'  in  self .model.method:
             start  =  k_diff
         else :
             start  =  k_diff  +  self .k_ar
         if  self .data.dates  is  not  None :
             dates  =  self .data.dates
             sample  =  [dates[start].strftime( '%m-%d-%Y' )]
             sample  + =  [dates[ - 1 ].strftime( '%m-%d-%Y' )]
         else :
             sample  =  str (start)  +  ' - '  +  str ( len ( self .data.orig_endog))
 
         k_ar, k_ma  =  self .k_ar,  self .k_ma
 
         # Roots table
         if  k_ma  and  k_ar:
             arstubs  =  [ "AR.%d"  %  for  in  range ( 1 , k_ar  +  1 )]
             mastubs  =  [ "MA.%d"  %  for  in  range ( 1 , k_ma  +  1 )]
             stubs  =  arstubs  +  mastubs
             roots  =  np.r_[ self .arroots,  self .maroots]
             freq  =  np.r_[ self .arfreq,  self .mafreq]
         elif  k_ma:
             mastubs  =  [ "MA.%d"  %  for  in  range ( 1 , k_ma  +  1 )]
             stubs  =  mastubs
             roots  =  self .maroots
             freq  =  self .mafreq
         elif  k_ar:
             arstubs  =  [ "AR.%d"  %  for  in  range ( 1 , k_ar  +  1 )]
             stubs  =  arstubs
             roots  =  self .arroots
             freq  =  self .arfreq
         else :   # 0, 0 order
             stubs  =  []
 
         if  len (stubs):
             modulus  =  np. abs (roots)
             data  =  np.column_stack((roots.real, roots.imag, modulus, freq))
             data  =  DataFrame(data)
             data.columns  =  [ 'Real' 'Imaginary' 'Modulus' 'Frequency' ]
             data.index  =  stubs
 
         # Summary
         from  statsmodels.iolib  import  summary2
         smry  =  summary2.Summary()
 
         # Model info
         model_info  =  summary2.summary_model( self )
         model_info[ 'Method:' =  self .model.method
         model_info[ 'Sample:' =  sample[ 0 ]
         model_info[ '   ' =  sample[ - 1 ]
         model_info[ 'S.D. of innovations:' =  "%#5.3f"  %  self .sigma2 * * . 5
         model_info[ 'HQIC:' =  "%#5.3f"  %  self .hqic
         model_info[ 'No. Observations:' =  str ( len ( self .model.endog))
 
         # Parameters
         params  =  summary2.summary_params( self )
         smry.add_dict(model_info)
         smry.add_df(params, float_format = float_format)
         if  len (stubs):
             smry.add_df(data, float_format = "%17.4f" )
         smry.add_title(results = self , title = title)
 
         return  smry
 
     def  plot_predict( self , start = None , end = None , exog = None , dynamic = False ,
                      alpha = . 05 , plot_insample = True , ax = None ):
         from  statsmodels.graphics.utils  import  _import_mpl, create_mpl_ax
         =  _import_mpl()
         fig, ax  =  create_mpl_ax(ax)
 
 
         # use predict so you set dates
         forecast  =  self .predict(start, end, exog, dynamic)
         # doing this twice. just add a plot keyword to predict?
         start  =  self .model._get_predict_start(start, dynamic = False )
         end, out_of_sample  =  self .model._get_predict_end(end, dynamic = False )
 
         if  out_of_sample:
             steps  =  out_of_sample
             fc_error  =  self ._forecast_error(steps)
             conf_int  =  self ._forecast_conf_int(forecast[ - steps:], fc_error,
                                                alpha)
 
 
         if  hasattr ( self .data,  "predict_dates" ):
             from  pandas  import  TimeSeries
             forecast  =  TimeSeries(forecast, index = self .data.predict_dates)
             ax  =  forecast.plot(ax = ax, label = 'forecast' )
         else :
             ax.plot(forecast)
 
         =  ax.get_lines()[ - 1 ].get_xdata()
         if  out_of_sample:
             label  =  "{0:.0%} confidence interval" . format ( 1  -  alpha)
             ax.fill_between(x[ - out_of_sample:], conf_int[:,  0 ], conf_int[:,  1 ],
                             color = 'gray' , alpha = . 5 , label = label)
 
         if  plot_insample:
             ax.plot(x[:end  +  1  -  start],  self .model.endog[start:end + 1 ],
                     label = self .model.endog_names)
 
         ax.legend(loc = 'best' )
 
         return  fig
     plot_predict.__doc__  =  _plot_predict
 
 
class  ARMAResultsWrapper(wrap.ResultsWrapper):
     _attrs  =  {}
     _wrap_attrs  =  wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_attrs,
                                    _attrs)
     _methods  =  {}
     _wrap_methods  =  wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_methods,
                                      _methods)
wrap.populate_wrapper(ARMAResultsWrapper, ARMAResults)
 
 
class  ARIMAResults(ARMAResults):
     def  predict( self , start = None , end = None , exog = None , typ = 'linear' ,
                 dynamic = False ):
         return  self .model.predict( self .params, start, end, exog, typ, dynamic)
     predict.__doc__  =  _arima_results_predict
 
     def  _forecast_error( self , steps):
         sigma2  =  self .sigma2
         ma_rep  =  arma2ma(np.r_[ 1 - self .arparams],
                          np.r_[ 1 self .maparams], nobs = steps)
 
         fcerr  =  np.sqrt(np.cumsum(cumsum_n(ma_rep,  self .k_diff) * * 2 ) * sigma2)
         return  fcerr
 
     def  _forecast_conf_int( self , forecast, fcerr, alpha):
         const  =  norm.ppf( 1  -  alpha / 2. )
         conf_int  =  np.c_[forecast  -  const * fcerr, forecast  +  const * fcerr]
         return  conf_int
 
     def  forecast( self , steps = 1 , exog = None , alpha = . 05 ):
         """
         Out-of-sample forecasts
 
         Parameters
         ----------
         steps : int
             The number of out of sample forecasts from the end of the
             sample.
         exog : array
             If the model is an ARIMAX, you must provide out of sample
             values for the exogenous variables. This should not include
             the constant.
         alpha : float
             The confidence intervals for the forecasts are (1 - alpha) %
 
         Returns
         -------
         forecast : array
             Array of out of sample forecasts
         stderr : array
             Array of the standard error of the forecasts.
         conf_int : array
             2d array of the confidence interval for the forecast
 
         Notes
         -----
         Prediction is done in the levels of the original endogenous variable.
         If you would like prediction of differences in levels use `predict`.
         """
         if  exog  is  not  None :
             if  self .k_exog  = =  1  and  exog.ndim  = =  1 :
                 exog  =  exog[:,  None ]
             if  exog.shape[ 0 ] ! =  steps:
                 raise  ValueError( "new exog needed for each step" )
             # prepend in-sample exog observations
             exog  =  np.vstack(( self .model.exog[ - self .k_ar:,  self .k_trend:],
                               exog))
         forecast, ct  =  _arma_predict_out_of_sample( self .params, steps,  self .resid,
                                                self .k_ar,  self .k_ma,
                                                self .k_trend,  self .k_exog,
                                                self .model.endog,
                                                exog, method = self .model.method)
 
         #self.constant = ct
         =  self .k_diff
         endog  =  self .model.data.endog[ - d:]
         forecast  =  unintegrate(forecast, unintegrate_levels(endog, d))[d:]
 
         # get forecast errors
         fcerr  =  self ._forecast_error(steps)
         conf_int  =  self ._forecast_conf_int(forecast, fcerr, alpha)
         return  forecast, fcerr, conf_int
 
     def  plot_predict( self , start = None , end = None , exog = None , dynamic = False ,
                      alpha = . 05 , plot_insample = True , ax = None ):
         from  statsmodels.graphics.utils  import  _import_mpl, create_mpl_ax
         =  _import_mpl()
         fig, ax  =  create_mpl_ax(ax)
 
         # use predict so you set dates
         forecast  =  self .predict(start, end, exog,  'levels' , dynamic)
         # doing this twice. just add a plot keyword to predict?
         start  =  self .model._get_predict_start(start, dynamic = dynamic)
         end, out_of_sample  =  self .model._get_predict_end(end, dynamic = dynamic)
 
         if  out_of_sample:
             steps  =  out_of_sample
             fc_error  =  self ._forecast_error(steps)
             conf_int  =  self ._forecast_conf_int(forecast[ - steps:], fc_error,
                                                alpha)
 
         if  hasattr ( self .data,  "predict_dates" ):
             from  pandas  import  TimeSeries
             forecast  =  TimeSeries(forecast, index = self .data.predict_dates)
             ax  =  forecast.plot(ax = ax, label = 'forecast' )
         else :
             ax.plot(forecast)
 
         =  ax.get_lines()[ - 1 ].get_xdata()
         if  out_of_sample:
             label  =  "{0:.0%} confidence interval" . format ( 1  -  alpha)
             ax.fill_between(x[ - out_of_sample:], conf_int[:,  0 ], conf_int[:,  1 ],
                             color = 'gray' , alpha = . 5 , label = label)
 
         if  plot_insample:
             import  re
             k_diff  =  self .k_diff
             label  =  re.sub( "D\d*\." , "",  self .model.endog_names)
             levels  =  unintegrate( self .model.endog,
                                  self .model._first_unintegrate)
             ax.plot(x[:end  +  1  -  start],
                     levels[start  +  k_diff:end  +  k_diff  +  1 ], label = label)
 
         ax.legend(loc = 'best' )
 
         return  fig
 
     plot_predict.__doc__  =  _arima_plot_predict
 
 
class  ARIMAResultsWrapper(ARMAResultsWrapper):
     pass
wrap.populate_wrapper(ARIMAResultsWrapper, ARIMAResults)
 
 
if  __name__  = =  "__main__" :
     import  statsmodels.api as sm
 
     # simulate arma process
     from  statsmodels.tsa.arima_process  import  arma_generate_sample
     =  arma_generate_sample([ 1. - . 75 ], [ 1. , . 25 ], nsample = 1000 )
     arma  =  ARMA(y)
     res  =  arma.fit(trend = 'nc' , order = ( 1 1 ))
 
     np.random.seed( 12345 )
     y_arma22  =  arma_generate_sample([ 1. - . 85 , . 35 ], [ 1 , . 25 - . 9 ],
                                     nsample = 1000 )
     arma22  =  ARMA(y_arma22)
     res22  =  arma22.fit(trend = 'nc' , order = ( 2 2 ))
 
     # test CSS
     arma22_css  =  ARMA(y_arma22)
     res22css  =  arma22_css.fit(trend = 'nc' , order = ( 2 2 ), method = 'css' )
 
     data  =  sm.datasets.sunspots.load()
     ar  =  ARMA(data.endog)
     resar  =  ar.fit(trend = 'nc' , order = ( 9 0 ))
 
     y_arma31  =  arma_generate_sample([ 1 - . 75 - . 35 , . 25 ], [. 1 ],
                                     nsample = 1000 )
 
     arma31css  =  ARMA(y_arma31)
     res31css  =  arma31css.fit(order = ( 3 1 ), method = "css" , trend = "nc" ,
                              transparams = True )
 
     y_arma13  =  arma_generate_sample([ 1. - . 75 ], [ 1 , . 25 - . 5 , . 8 ],
                                     nsample = 1000 )
     arma13css  =  ARMA(y_arma13)
     res13css  =  arma13css.fit(order = ( 1 3 ), method = 'css' , trend = 'nc' )
 
# check css for p < q and q < p
     y_arma41  =  arma_generate_sample([ 1. - . 75 , . 35 , . 25 - . 3 ], [ 1 - . 35 ],
                                     nsample = 1000 )
     arma41css  =  ARMA(y_arma41)
     res41css  =  arma41css.fit(order = ( 4 1 ), trend = 'nc' , method = 'css' )
 
     y_arma14  =  arma_generate_sample([ 1 - . 25 ], [ 1. - . 75 , . 35 , . 25 - . 3 ],
                                     nsample = 1000 )
     arma14css  =  ARMA(y_arma14)
     res14css  =  arma14css.fit(order = ( 4 1 ), trend = 'nc' , method = 'css' )
 
     # ARIMA Model
     from  statsmodels.datasets  import  webuse
     dta  =  webuse( 'wpi1' )
     wpi  =  dta[ 'wpi' ]
 
     mod  =  ARIMA(wpi, ( 1 1 1 )).fit()
文章出处:http://www.cnblogs.com/foley/p/5582358.html
  • 5
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值