95:判断整除
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 3010 通过数: 1178
【题目描述】
一个给定的正整数序列,在每个数之前都插入+号或-号后计算它们的和。比如序列:1、2、4共有8种可能的序列:
(+1) + (+2) + (+4) = 7
(+1) + (+2) + (-4) = -1
(+1) + (-2) + (+4) = 3
(+1) + (-2) + (-4) = -5
(-1) + (+2) + (+4) = 5
(-1) + (+2) + (-4) = -3
(-1) + (-2) + (+4) = 1
(-1) + (-2) + (-4) = -7
所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、-3、-6、-9……都可以认为是3的倍数。
【输入】
输入的第一行包含两个数:N(2<N<10000)和k(2<k<100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。
【输出】
如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)
【输入样例】
3 2
1 2 4
【输出样例】
NO
【来源】
No
//1195:判断整除
#include<iostream>
#include<cmath>//abs()取绝对值函数要用到
using namespace std;
int N,k,i,j;
int t1,t2;
int a[10001];//a[i]表示整数序列中第i个元素
int sum[10001][99];//sum[i][j]表示前i个数相加的和除以k的余数,可能为j或-j的情况,1表示余数有可能为j,0表示不可能
int main()
{
cin>>N>>k;
a[0]=N;
for(i=1;i<=N;i++)
{
cin>>a[i];
if(a[i]<0) //输入数据时对a[i]处理,保证a[i]为小于k的正整数
a[i]=-a[i];
a[i]%=k;
}
sum[1][a[1]]=1;
//第1个数相加的和,就是a[i]自身
for(i=2;i<=N;i++) //从第2个数一直加到第N个数,结果是否可能除以k余数为j,保存在sum[i][j]中
for(j=0;j<k;j++)//任意两个数相加的和,除以k的余数范围是0至k-1
{
if(sum[i-1][j])
{
t1=abs((j+a[i])%k);//比如j=2,a[i]=4,k=5,j+a[i]=2+4=6,6%5=1;而-j-a[i]=-6,-6%5=-1,对应1和-1的情况,sum[i][1]=1;
t2=abs((a[i]-j)%k);//4-2=2,2-4=-2,2和-2绝对值都是2
sum[i][t1]=1;
sum[i][t2]=1;
}
}
if(sum[N][0]==1)
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
return 0;
}