异常检测
文章平均质量分 90
梦落花叶萱
这个作者很懒,什么都没留下…
展开
-
MCM: Masked Cell Modeling for Anomaly Detection in Tabular Data(代码解读三)
与上一篇训练过程中的执行步骤一模一样,可以结合我前一篇的内容来看,此处不做过多赘述。评估完后,获取指标,求平均,然后把指标打印出来。至此,模型的评估过程完全结束!传递进去,注意此处传递的参数是0。方法,按代码步骤开始执行。,所以一个批次就能搞定。1.模型训练完,到达。原创 2024-07-26 20:49:26 · 401 阅读 · 0 评论 -
MCM: Masked Cell Modeling for Anomaly Detection in Tabular Data(代码解读二)
拓展到[178, 15, 30]大小的张量,即包含 178 个批次的数据,每个批次有 15 个遮罩,每个遮罩处理的数据有 30 个特征。接下来,循环进行对每个遮罩的操作。时,每个元素的大小如下图所示。此步对应上一篇3.2节:G从X中学习信息,并输出一个与X同维度的遮罩矩阵M,即代码中的。一共是178个三维训练数据,每个数据有15个mask,每个mask对应30个特征,但是此时。,由于前面的初始化已经把模型参数定义完成,执行。去接收,得到的结果也与上图的形状一致,方法,代码解释看代码段,执行到。原创 2024-07-25 22:33:47 · 1106 阅读 · 0 评论 -
MCM: Masked Cell Modeling for Anomaly Detection in Tabular Data(代码解读一)
MCM模型的代码解读一,主要涉及模型定义与初始化参数原创 2024-07-21 20:26:32 · 757 阅读 · 0 评论 -
MCM: Masked Cell Modeling for Anomaly Detection in Tabular Data(论文研读)
解决了表格数据(即结构化数据)中的异常检测问题——通常由one-class分类(只有一个类别或类别的样本集用于训练模型。通常,这个类别包含所谓的正常或良性样本,而异常样本或异常类别是未知的或未在训练数据中包含的)设置实现,训练集仅包含正常样本。本文主要工作:扩展了遮罩建模方法,捕获训练集中特征之间的内在相关性,偏离这种相关性的样本极有可能是异常。贡献1:如何获得多元和多样化的相关性——新遮罩策略(学习产生多个遮罩)原创 2024-07-19 21:07:07 · 1235 阅读 · 1 评论