参考
AI大模型
决策树
基础中的基础
决策树是一种简单而直观的AI模型。它就像一张流程图,每个节点代表一个决策点,每个分支代表一个可能的答案,最终导向一个结果。例如,我们可以使用决策树来判断一封邮件是否为垃圾邮件
随机森林与梯度提升
集成学习的力量
尽管决策树简单易懂,但其预测能力有限。为了提升性能,我们可以使用集成学习,将多个模型组合成一个强大的模型。随机森林和梯度提升是两种流行的集成学习方法。随机森林通过构建多个决策树并综合它们的预测结果来提高准确性;而梯度提升则逐步优化模型的预测错误,逐步逼近最佳结果
神经网络
模拟人脑的学习过程
包含一个输入层、一个或多个隐藏层和一个输出层, 如果任何单个节点的输出高于指定的阈值,那么会激活该节点,并将数据发送到网络的下一层。 否则,不会将数据传递到网络的下一层,与由人类专家进行的人工识别相比,语音识别或图像识别任务可能只需要几分钟而不是数小时。
用于处理复杂的任务,如图像识别、语音识别和自然语言处理、如Google搜索
深度学习
神经网络的进阶
深度学习是神经网络的一个分支,它利用大量的数据和计算资源来训练深度神经网络。通过逐层学习和特征提取,深度学习模型能够自动发现输入数据中的复杂模式,从而实现高度精确的预测和分类。如今,深度学习已广泛应用于自动驾驶、医疗诊断、金融预测等领域
实践中的选择:如何挑选合适的模型?
在实际应用中,选择合适的AI模型至关重要。以下是一些建议:
- 理解问题:首先明确您要解决的问题是什么类型的任务,例如分类、回归、聚类等。
- 数据特性:分析您的数据特性,包括数据的类型、规模、噪声等。不同的模型对数据的要求有所不同。
- 模型复杂度:根据问题的复杂性和数据的特点,选择合适的模型复杂度。过于简单的模型可能无法充分捕捉数据的特征,而过于复杂的模型则可能导致过拟合。
- 实验与调优:通过交叉验证、网格搜索等技术,对模型进行训练和调优,找到最佳的模型配置。
- 评估与迭代:使用合适的评估指标对模型性能进行评估,并根据评估结果对模型进行迭代和改进。
总之,从决策树到深度学习,每种模型都有其独特之处和适用场景。作为AI从业者或爱好者,了解不同模型的特点和应用场景,并根据实际问题选择合适的模型是至关重要的。通过不断学习和实践,您将能够更好地利用AI技术解决实际问题,并推动人工智能领域的发展。
OpenAI
提示工程Prompt
- 零样本Prompt:zero-shot
- 思维链Prompt
- One-Shot 和 Few Shot 的Prompt
- prompt技巧
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": "Determine the cost"
},
{
"role": "user",
"content": "Sam has 3 notebooks. She purchases 4 more packs of notebooks, with 5 notebooks in each pack. How many notebooks does Sarah have now?"
},
{
"role": "assistant",
"content": "Sam initial notebooks: 3 notebooks\nNotebooks from the new packs: 4 packs * 5 notebooks/pack = 20 notebooks\nNow, add these two quantities:\n3 notebooks (initial) + 20 notebooks (new packs) = 23 notebooks"
},
{
"role": "user",
"content": "The basket has 30 apples. If 20 apples are used for lunch and an additional 6 are bought from the market, how many apples are there in the basket?"
}
],
temperature=0,
max_tokens=1024,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
result = response.choices[0].message.content
print(result)
RAG
全称是Retrieval-Augmented Generation,中文翻译为检索增强生成。它是一个为大模型提供外部知识源的概念,对于专有、快速更新的数据却并没有较好的解决方法,为此检索增强生成(RAG)的出现,弥合了LLM常识和专有数据之间的差距
深度学习框架
python:TensorFlow、PyTorch、Keras
c++:Caffe
流程
收集数据->数据清洗(去重、null值处理等)->数据划分(训练、验证、参数调整等数据划分)->模型选择->模型训练(GPU加速等)->模型评估(测试数据集测试准确度、召回率等)->模型部署(flask转换为api、docker)