AI大模型

参考

AI流程

AI大模型

决策树

基础中的基础
决策树是一种简单而直观的AI模型。它就像一张流程图,每个节点代表一个决策点,每个分支代表一个可能的答案,最终导向一个结果。例如,我们可以使用决策树来判断一封邮件是否为垃圾邮件

随机森林与梯度提升

集成学习的力量
尽管决策树简单易懂,但其预测能力有限。为了提升性能,我们可以使用集成学习,将多个模型组合成一个强大的模型。随机森林和梯度提升是两种流行的集成学习方法。随机森林通过构建多个决策树并综合它们的预测结果来提高准确性;而梯度提升则逐步优化模型的预测错误,逐步逼近最佳结果

神经网络

模拟人脑的学习过程
包含一个输入层、一个或多个隐藏层和一个输出层, 如果任何单个节点的输出高于指定的阈值,那么会激活该节点,并将数据发送到网络的下一层。 否则,不会将数据传递到网络的下一层,与由人类专家进行的人工识别相比,语音识别或图像识别任务可能只需要几分钟而不是数小时。
用于处理复杂的任务,如图像识别、语音识别和自然语言处理、如Google搜索

深度学习

神经网络的进阶
深度学习是神经网络的一个分支,它利用大量的数据和计算资源来训练深度神经网络。通过逐层学习和特征提取,深度学习模型能够自动发现输入数据中的复杂模式,从而实现高度精确的预测和分类。如今,深度学习已广泛应用于自动驾驶、医疗诊断、金融预测等领域
实践中的选择:如何挑选合适的模型?

在实际应用中,选择合适的AI模型至关重要。以下是一些建议:

  • 理解问题:首先明确您要解决的问题是什么类型的任务,例如分类、回归、聚类等。
  • 数据特性:分析您的数据特性,包括数据的类型、规模、噪声等。不同的模型对数据的要求有所不同。
  • 模型复杂度:根据问题的复杂性和数据的特点,选择合适的模型复杂度。过于简单的模型可能无法充分捕捉数据的特征,而过于复杂的模型则可能导致过拟合。
  • 实验与调优:通过交叉验证、网格搜索等技术,对模型进行训练和调优,找到最佳的模型配置。
  • 评估与迭代:使用合适的评估指标对模型性能进行评估,并根据评估结果对模型进行迭代和改进。
    总之,从决策树到深度学习,每种模型都有其独特之处和适用场景。作为AI从业者或爱好者,了解不同模型的特点和应用场景,并根据实际问题选择合适的模型是至关重要的。通过不断学习和实践,您将能够更好地利用AI技术解决实际问题,并推动人工智能领域的发展。

OpenAI

提示工程Prompt

  • 零样本Prompt:zero-shot
  • 思维链Prompt
  • One-Shot 和 Few Shot 的Prompt
  • prompt技巧
from openai import OpenAI
client = OpenAI()

response = client.chat.completions.create(
  model="gpt-3.5-turbo",
  messages=[
    {
      "role": "system",
      "content": "Determine the cost"
    },
    {
      "role": "user",
      "content": "Sam has 3 notebooks. She purchases 4 more packs of notebooks, with 5 notebooks in each pack. How many notebooks does Sarah have now?"
    },
    {
      "role": "assistant",
      "content": "Sam initial notebooks: 3 notebooks\nNotebooks from the new packs: 4 packs * 5 notebooks/pack = 20 notebooks\nNow, add these two quantities:\n3 notebooks (initial) + 20 notebooks (new packs) = 23 notebooks"
    },
    {
      "role": "user",
      "content": "The basket has 30 apples. If 20 apples are used for lunch and an additional 6 are bought from the market, how many apples are there in the basket?"
    }
  ],
  temperature=0,
  max_tokens=1024,
  top_p=1,
  frequency_penalty=0,
  presence_penalty=0
)
result = response.choices[0].message.content
print(result)

RAG

RAG简介和实践

全称是Retrieval-Augmented Generation,中文翻译为检索增强生成。它是一个为大模型提供外部知识源的概念,对于专有、快速更新的数据却并没有较好的解决方法,为此检索增强生成(RAG)的出现,弥合了LLM常识和专有数据之间的差距

深度学习框架

python:TensorFlow、PyTorch、Keras
c++:Caffe

流程

收集数据->数据清洗(去重、null值处理等)->数据划分(训练、验证、参数调整等数据划分)->模型选择->模型训练(GPU加速等)->模型评估(测试数据集测试准确度、召回率等)->模型部署(flask转换为api、docker)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>