Problem 1205 小鼠迷宫问题
Accept: 597 Submit: 1904
Time Limit: 1000 mSec Memory Limit : 32768 KB
Problem Description
问题描述
小鼠a与小鼠b身处一个m×n的迷宫中,如图所示。每一个方格表示迷宫中的一个房间。这m×n个房间中有一些房间是封闭的,不允许任何人进入。在迷宫中任何位置均可沿上,下,左,右4个方向进入未封闭的房间。小鼠a位于迷宫的(p,q)方格中,它必须找出一条通向小鼠b所在的(r,s)方格的路。请帮助小鼠a找出所有通向小鼠b的最短道路。
编程任务
对于给定的小鼠的迷宫,编程计算小鼠a通向小鼠b的所有最短道路。Input
本题有多组输入数据,你必须处理到EOF为止。
每组数据的第一行有3个正整数n,m,k,分别表示迷宫的行数,列数和封闭的房间数。接下来的k行中,每行2个正整数,表示被封闭的房间所在的行号和列号。最后的2行,每行也有2个正整数,分别表示小鼠a所处的方格(p,q)和小鼠b所处的方格(r,s)。(1≤p,r≤n; 1≤q,s≤m)
每组数据的第一行有3个正整数n,m,k,分别表示迷宫的行数,列数和封闭的房间数。接下来的k行中,每行2个正整数,表示被封闭的房间所在的行号和列号。最后的2行,每行也有2个正整数,分别表示小鼠a所处的方格(p,q)和小鼠b所处的方格(r,s)。(1≤p,r≤n; 1≤q,s≤m)
结果输出
Output
对于每组数据,将计算出的小鼠a通向小鼠b的最短路长度和有多少条不同的最短路输出。每组数据输出两行,第一行是最短路长度;第2行是不同的最短路数。每组输出之间没有空行。
如果小鼠a无法通向小鼠b则输出“No Solution!”。
如果小鼠a无法通向小鼠b则输出“No Solution!”。
Sample Input
8 8 33 34 56 62 17 7
Sample Output
1196
Source
FJOI2005
相信大家如果来查题解想必是卡在了输出路径数目上边、TLE是小事,没有能剪枝的点才是大事。
这个题做了很长时间,也想了很长时间,能够剪枝的地方都剪枝了,TLE的命运还是摆脱不了。参考了大牛们的代码,最终AC。
思路:BFS标记走到这个点的步数。step【endx】【endy】就是最少步数。在路径上标记下的数字有这样的特点:如果step【i】【j】=x的周边四个点中的step【ii】【jj】==x-1,那么说明i,j这个点,是能够通过ii,jj走过来的。根据这个特点,我们直接dfs回溯即可,口述的可能稍微有点浅显,我们来分步处理代码。
ps、FOJ里边很多搜索题都喜欢让我们先预处理。就像这样。。。。。。。
BFS标记步数:
void bfs(int x,int y)//step数组用来标记,a数组是图。
{
memset(step,0,sizeof(step));
step[x][y]=1;
now.x=x;
now.y=y;
queue<zuobiao >s;
s.push(now);
while(!s.empty())
{
now=s.front();
s.pop();
for(int i=0;i<4;i++)
{
nex.x=now.x+fx[i];
nex.y=now.y+fy[i];
if(nex.x>=0&&nex.x<n&&nex.y>=0&&nex.y<m&&step[nex.x][nex.y]==0&&a[nex.x][nex.y]!=1)//我这里处理能走的用0表示,否则用1
{
step[nex.x][nex.y]=step[now.x][now.y]+1;//走一步标记一步
s.push(nex);
}
}
}
}
dfs回溯寻找路径数:
void dfs(int x,int y)//从endx,endy开始回溯
{
if(x==sx&&y==sy)//如果从终点找到了起点,那么就有一条路径了
{
cont++;
return ;
}
else
{
for(int i=0;i<4;i++)
{
int xx=x+fx[i];
int yy=y+fy[i];
if(step[xx][yy]==step[x][y]-1)//如果周边四个点有一个满足刚刚所描述的特点,那么说明x,y可以通过xx,yy走过来
{
dfs(xx,yy);//然后继续回溯,直到找到了起点,计数器++
}
}
}
}
完整的AC代码:
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
struct zuobiao
{
int x,y;
}now,nex;
int step[105][105];
int a[105][105];
int fx[4]={0,0,1,-1};
int fy[4]={1,-1,0,0};
int n,m,k;
int sx,sy,ex,ey;
int cont;
void bfs(int x,int y)
{
memset(step,0,sizeof(step));
step[x][y]=1;
now.x=x;
now.y=y;
queue<zuobiao >s;
s.push(now);
while(!s.empty())
{
now=s.front();
s.pop();
for(int i=0;i<4;i++)
{
nex.x=now.x+fx[i];
nex.y=now.y+fy[i];
if(nex.x>=0&&nex.x<n&&nex.y>=0&&nex.y<m&&step[nex.x][nex.y]==0&&a[nex.x][nex.y]!=1)
{
step[nex.x][nex.y]=step[now.x][now.y]+1;
s.push(nex);
}
}
}
}
void dfs(int x,int y)
{
if(x==sx&&y==sy)
{
cont++;
return ;
}
else
{
for(int i=0;i<4;i++)
{
int xx=x+fx[i];
int yy=y+fy[i];
if(step[xx][yy]==step[x][y]-1)
{
dfs(xx,yy);
}
}
}
}
int main()
{
while(~scanf("%d%d%d",&n,&m,&k))
{
cont=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
a[i][j]=0;
}
}
while(k--)
{
int x,y;
scanf("%d%d",&x,&y);
x--;y--;
a[x][y]=1;
}
scanf("%d%d%d%d",&sx,&sy,&ex,&ey);
sx--;sy--;ex--;ey--;
bfs(sx,sy);
printf("%d\n",step[ex][ey]-1);
dfs(ex,ey);
printf("%d\n",cont);
}
}