Vika has n jars with paints of distinct colors. All the jars are numbered from 1 to n and the i-th jar contains ai liters of paint of color i.
Vika also has an infinitely long rectangular piece of paper of width 1, consisting of squares of size 1 × 1. Squares are numbered 1, 2, 3and so on. Vika decided that she will start painting squares one by one from left to right, starting from the square number 1 and some arbitrary color. If the square was painted in color x, then the next square will be painted in color x + 1. In case of x = n, next square is painted in color 1. If there is no more paint of the color Vika wants to use now, then she stops.
Square is always painted in only one color, and it takes exactly 1 liter of paint. Your task is to calculate the maximum number of squares that might be painted, if Vika chooses right color to paint the first square.
The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the number of jars with colors Vika has.
The second line of the input contains a sequence of integers a1, a2, ..., an (1 ≤ ai ≤ 109), where ai is equal to the number of liters of paint in the i-th jar, i.e. the number of liters of color i that Vika has.
The only line of the output should contain a single integer — the maximum number of squares that Vika can paint if she follows the rules described above.
5 2 4 2 3 3
12
3 5 5 5
15
6 10 10 10 1 10 10
11
In the first sample the best strategy is to start painting using color 4. Then the squares will be painted in the following colors (from left to right): 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5.
In the second sample Vika can start to paint using any color.
In the third sample Vika should start painting using color number 5.
题目大意:给你n种颜色,每种颜色可以使用的次数告诉你。
然后规定颜色必须依次涂的情况下,最长可以涂多长,Note中有对样例的解释。
思路:
1、找到最小值所在的位子,并且找到最小值,并初始化output=minn*n
2、然后枚举最小值所在的位子,依次向后枚举(当然枚举到最后一个之后再枚举第一种颜色)如果向后枚举到的颜色的值大于minn,那么tmp++。维护最大tmp;
3、ans=output+max(tmp);
Ac代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
#define ll __int64
ll a[200300];
ll pos[200300];
int main()
{
ll n;
while(~scanf("%I64d",&n))
{
ll minn=0x3f3f3f3f;
ll cont=0;
ll output=0;
for(ll i=1;i<=n;i++)
{
scanf("%I64d",&a[i]);
if(a[i]<minn)
{
minn=a[i];
cont=0;
pos[cont++]=i;
}
else if(a[i]==minn)
{
pos[cont++]=i;
}
}
ll sum=0;
output=minn*n;
for(ll i=0;i<cont;i++)
{
ll x=pos[i]+1;
if(x>n)x-=n;
ll flag=0;
ll tmp=0;
for(ll j=x;j<=n;j++)
{
if(a[j]>minn)tmp++;
else if(a[j]==minn)
{
flag=1;break;
}
}
if(flag==1)
{
sum=max(sum,tmp);
continue;
}
for(ll j=1;j<x;j++)
{
if(a[j]>minn)tmp++;
else if(a[j]==minn)break;
}
sum=max(sum,tmp);
}
printf("%I64d\n",output+sum);
}
}