hrbust 1614 小z的地图【四色定理+Dfs】

小z的地图
Time Limit: 1000 MSMemory Limit: 32768 K
Total Submit: 97(29 users)Total Accepted: 29(25 users)Rating: Special Judge: No
Description
小z有一张被分割成了N块不规则的多边形区域的地图,他将每块多边形区域从1到N依次标号。
他现在想将所有多边形区域涂上颜色,并且让所有相邻的多边形区域颜色不同。小z想知道
最少需要多少种颜色可以将地图涂满。


Input
输入第一行为组数T(T<=15)。
对于每组数据第一行为两个整数N和M(1 <= N <= 30)。
分别代表有多边形的数量,以及多边形之间的相邻的数量。
接下来有M个整数对a b。代表多边形a和多边形b相连。
Output
对于每组数据输出最少需要的颜色数量。
Sample Input
2
7 9
1 2 1 3 2 3 2 5 3 5 3 4 3 6 4 6 4 7  
5 4
1 2 2 3 3 4 4 5
Sample Output
3
2
Hint
已知对于地图着色,最多只需四种颜色即可保证相邻多边形区域颜色不同,并且将地图涂满。

Author
陈禹@HRBUST

思路:


1、根据离散数学的四色猜想.对于平面图着色,最多需要四种颜色就能保证相邻的多边形区域颜色不同,并且将地图涂满。虽然四色定理只是猜想,但是对于小规模数据是一定适用的。


2、那么考虑四次枚举,每次枚举一个上届(从小到大),进行Dfs,每Dfs到一个点,同时暴力判断并染色,对应第一个可行的解,输出即可。


Ac代码:

#include<stdio.h>
#include<string.h>
using namespace std;
int map[50][50];
int color[50];
int n,m,ok;
int judge(int u,int col)
{
    for(int i=1;i<=n;i++)
    {
        if(map[u][i]==1&&color[i]==col)return 0;
    }
    return 1;
}
void Dfs(int u,int col)
{
    if(u==n+1)
    {
        ok=1;return ;
    }
    for(int i=1;i<=col;i++)
    {
        if(judge(u,i)==1)
        {
            color[u]=i;
            Dfs(u+1,col);
        }
    }
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        memset(map,0,sizeof(map));
        while(m--)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            map[x][y]=map[y][x]=1;
        }
        ok=0;
        for(int i=1;i<=4;i++)
        {
            memset(color,0,sizeof(color));
            Dfs(1,i);
            if(ok==1)
            {
                printf("%d\n",i);
                break;
            }
        }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值