Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 10, 1 ≤ k ≤ n) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Print a single integer — the number of photographs Paul can take which include at least k violas.
2 2 1 1 1 2
4
3 2 3 3 1 1 3 1 2 2
1
3 2 3 2 1 1 3 1 2 2
4
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows
*# **Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows
#* *# #*Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample.
题目大意:
现在有一个R*C的矩阵,其中有N个小提琴,现在我们可以任意选择一个矩阵作为拍照的矩阵,要求这个矩阵中要至少有K个小提琴才行。
问有多少种合法情况。
思路:
观察到R,C都是<=10的,那么我们O(N^4)去枚举矩阵的左上角和右下角,再O(n^2)的去暴力判定这个矩阵有多少个小提琴。
对应如果满足条件的矩阵,output++即可。
O(n^6)就能搞定这个问题。
Ac代码:
#include<stdio.h>
#include<string.h>
using namespace std;
int a[15][15];
int main()
{
int n,m,q,need;
while(~scanf("%d%d%d%d",&n,&m,&q,&need))
{
memset(a,0,sizeof(a));
for(int i=0;i<q;i++)
{
int x,y;
scanf("%d%d",&x,&y);
a[x][y]++;
}
int output=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
for(int k=i;k<=n;k++)
{
for(int l=j;l<=m;l++)
{
int sum=0;
for(int ii=1;ii<=n;ii++)
{
for(int jj=1;jj<=m;jj++)
{
if(ii<=k&&ii>=i&&jj<=l&&jj>=j)
{
sum+=a[ii][jj];
}
}
}
if(sum>=need)
{
//printf("%d %d %d %d\n",i,j,k,l);
output++;
}
}
}
}
}
printf("%d\n",output);
}
}