[编程题] 合并回文子串
时间限制:2秒
空间限制:262144K
输入两个字符串A和B,合并成一个串C,属于A和B的字符在C中顺序保持不变。如"abc"和"xyz"可以被组合成"axbycz"或"abxcyz"等。
我们定义字符串的价值为其最长回文子串的长度(回文串表示从正反两边看完全一致的字符串,如"aba"和"xyyx")。
需要求出所有可能的C中价值最大的字符串,输出这个最大价值即可
我们定义字符串的价值为其最长回文子串的长度(回文串表示从正反两边看完全一致的字符串,如"aba"和"xyyx")。
需要求出所有可能的C中价值最大的字符串,输出这个最大价值即可
输入描述:
第一行一个整数T(T ≤ 50)。 接下来2T行,每两行两个字符串分别代表A,B(|A|,|B| ≤ 50),A,B的字符集为全体小写字母。
输出描述:
对于每组数据输出一行一个整数表示价值最大的C的价值。
输入例子:
2 aa bb a aaaabcaa
输出例子:
4 5
区间Dp好弱啊= =
1、设定Dp【i】【j】【k】【l】表示串一用了区间【i,j】,串二用了区间【k,l】,是否能够构成回文串。
那么其状态转移方程其实很好写,分四种转移方程去写即可。
2、注意枚举方式,以及转移情况是否存在。
Ac代码:
#include<stdio.h>
#include<iostream>
#include<string.h>
using namespace std;
#define inf 0x3f3f3f3f
char a[55];
char b[55];
char c[105];
int dp[55][55][55][55];
inline void upd(int& x, int y) { x = max(x, y); }
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%s",a+1);
scanf("%s",b+1);
int n=strlen(a+1);
int m=strlen(b+1);
int output=0;
memset(dp,0,sizeof(dp));
for(int len1=0;len1<=n;len1++)
{
for(int len2=0;len2<=m;len2++)
{
for(int i=1,j=len1;j<=n;i++,j++)
{
for(int k=1,l=len2;l<=m;k++,l++)
{
if(len1==0&&len2==0)
{
dp[i][j][k][l]=0;
}
else if((len1==0&&len2==1)||(len1==1&&len2==0))
{
dp[i][j][k][l]=1;
}
else
{
dp[i][j][k][l]=-0x3f3f3f3f;
if(j>i&&a[i]==a[j])dp[i][j][k][l]=max(dp[i][j][k][l],dp[i+1][j-1][k][l]+2);
if(j>=i&&l>=k&&a[i]==b[l])dp[i][j][k][l]=max(dp[i][j][k][l],dp[i+1][j][k][l-1]+2);
if(j>=i&&l>=k&&a[j]==b[k])dp[i][j][k][l]=max(dp[i][j][k][l],dp[i][j-1][k+1][l]+2);
if(l>k&&b[k]==b[l])dp[i][j][k][l]=max(dp[i][j][k][l],dp[i][j][k+1][l-1]+2);
output=max(output,dp[i][j][k][l]);
}
}
}
}
}
printf("%d\n",output);
}
}