Hive 常用内置函数

一、系统内置函数常用操作

1)查看系统自带的函数

hive> show functions; 	

2)显示自带的函数的用法

hive> desc function upper; 	

3)详细显示自带的函数的用法

hive> desc function extended upper; 

二、空字段赋值

1)函数说明
NVL:给值为 NULL 的数据赋值,它的格式是 NVL( value,default_value)。它的功能是如 果 value 为 NULL,则 NVL 函数返回 default_value 的值,否则返回 value 的值,如果两个参数 都为 NULL ,则返回 NULL。

2)查询:如果员工的 comm 为 NULL,则用-1代替

hive (default)> select comm,nvl(comm, -1) from emp;
OK
comm _c1
NULL -1.0
300.0 300.0
500.0 500.0
NULL -1.0
1400.0 1400.0
NULL -1.0
NULL -1.0
NULL -1.0
NULL -1.0
0.0 0.0
NULL -1.0
NULL -1.0
NULL -1.0
NULL -1.0

3)查询:如果员工的 comm 为 NULL,则用领导 id 代替

hive (default)> select comm, nvl(comm,mgr) from emp;
OK
comm _c1
NULL 7902.0
300.0 300.0
500.0 500.0
NULL 7839.0
1400.0 1400.0
NULL 7839.0
NULL 7839.0
NULL 7566.0
NULL NULL
0.0 0.0
NULL 7788.0
NULL 7698.0
NULL 7566.0
NULL 7782.0

三、CASE WHEN THEN ELSE END

1) 数据准备

namedept_idsex
悟空A
大海A
宋宋B
凤姐A
婷姐B
婷婷B

2) 需求
求出不同部门男女各多少人。结果如下:

dept_Id
A21
B12

3) 创建本地 emp_sex.txt,导入数据

[atguigu@hadoop102 datas]$ vi emp_sex.txt
悟空 A 男
大海 A 男
宋宋 B 男
凤姐 A 女
婷姐 B 女
婷婷 B 女

4) 创建 hive 表并导入数据

create table emp_sex(
name string,
dept_id string,
sex string)
row format delimited fields terminated by "\t";
load data local inpath '/opt/module/hive/data/emp_sex.txt' into table
emp_sex;

5) 按需求查询数据

select
dept_id,
sum(case sex when '男' then 1 else 0 end) male_count,
sum(case sex when '女' then 1 else 0 end) female_count
from emp_sex
group by dept_id;

四、行转列

1)相关函数说明

  • CONCAT(string A/col, string B/col…):返回输入字符串连接后的结果,支持任意个输入字 符串;
  • CONCAT_WS(separator, str1, str2,...):它是一个特殊形式的 CONCAT()。第一个参数剩余参数间的分隔符。分隔符可以是与剩余参数一样的字符串。如果分隔符是 NULL,返回值也将为NULL。这个函数会跳过分隔符参数后的任何NULL和空字符串。分隔符将被加到被连接的字符串之间;

注意: CONCAT_WS must be "stringor array<string>

  • COLLECT_SET(col):函数只接受基本数据类型,它的主要作用是将某字段的值进行去重 汇总,产生 Array 类型字段。

2) 数据准备

nameconstellationblood_type
孙悟空白羊座A
大海射手座A
宋宋白羊座B
猪八戒白羊座A
凤姐射手座A
苍老师白羊座B

3)需求
把星座和血型一样的人归类到一起。结果如下:

射手座,A 	大海|凤姐
白羊座,A 	孙悟空|猪八戒
白羊座,B		宋宋|苍老师

4) 创建本地 constellation.txt,导入数据

[atguigu@hadoop102 datas]$ vim person_info.txt
孙悟空 白羊座 A
大海 射手座 A
宋宋 白羊座 B
猪八戒 白羊座 A
凤姐 射手座 A
苍老师 白羊座 B

5) 创建 hive 表并导入数据

create table person_info(
name string,
constellation string,
blood_type string)
row format delimited fields terminated by "\t";
load data local inpath "/opt/module/hive/data/person_info.txt" into table person_info;

6) 按需求查询数据

SELECT
t1.c_b,
CONCAT_WS("|",collect_set(t1.name))
FROM (
SELECT
NAME,
CONCAT_WS(',',constellation,blood_type) c_b
FROM person_info
) t1 --别名
GROUP BY t1.c_b;

五、列转行

1)函数说明

  • EXPLODE(col):将 hive 一列中复杂的 Array 或者 Map 结构拆分成多行。
  • LATERAL VIEW
    用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias
    解释:用于和 split, explode 等 UDTF 一起使用,它能够将一列数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。

2) 数据准备

moviecategory
《疑犯追踪》悬疑,动作,科幻,剧情
《Lie to me》悬疑,警匪,动作,心理,剧情
《战狼 2》战争,动作,灾难

3) 需求
将电影分类中的数组数据展开。结果如下:

《疑犯追踪》 悬疑
《疑犯追踪》 动作
《疑犯追踪》 科幻
《疑犯追踪》 剧情
《Lie to me》 悬疑
《Lie to me》 警匪
《Lie to me》 动作
《Lie to me》 心理
《Lie to me》 剧情
《战狼 2》 战争
《战狼 2》 动作
《战狼 2》 灾难

4) 创建本地 movie.txt,导入数据

[atguigu@hadoop102 datas]$ vi movie_info.txt
《疑犯追踪》 悬疑,动作,科幻,剧情
《Lie to me》 悬疑,警匪,动作,心理,剧情
《战狼 2》 战争,动作,灾难

5) 创建 hive 表并导入数据

create table movie_info(
movie string,
category string)
row format delimited fields terminated by "\t";
load data local inpath "/opt/module/data/movie.txt" into table movie_info;

6) 按需求查询数据

SELECT
movie,
category_name
FROM
movie_info
lateral VIEW
explode(split(category,",")) movie_info_tmp AS category_name;

六、窗口函数(开窗函数)

1)相关函数说明

  • OVER():指定分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变而变化。
  • CURRENT ROW:当前行
  • n PRECEDING:往前n行数据
  • n FOLLOWING:往后n行数据
  • UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING表示到后面的终点
  • LAG(col,n,default_val):往前第n行数据
  • LEAD(col,n, default_val):往后第n行数据
  • NTILE(n):把有序窗口的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。注意:n必须为int类型。
    2)数据准备:
name,orderdate,cost
jack,2017-01-01,10
tony,2017-01-02,15
jack,2017-02-03,23
tony,2017-01-04,29
jack,2017-01-05,46
jack,2017-04-06,42
tony,2017-01-07,50
jack,2017-01-08,55
mart,2017-04-08,62
mart,2017-04-09,68
neil,2017-05-10,12
mart,2017-04-11,75
neil,2017-06-12,80
mart,2017-04-13,94

3)需求
(1)查询在2017年4月份购买过的顾客及总人数
(2)查询顾客的购买明细及月购买总额
(3)上述的场景, 将每个顾客的cost按照日期进行累加
(4)查询每个顾客上次的购买时间
(5)查询前20%时间的订单信息
4)创建本地business.txt,导入数据

[atguigu@hadoop102 datas]$ vi business.txt

5)创建hive表并导入数据

create table business(
name string, 
orderdate string,
cost int
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
load data local inpath "/opt/module/datas/business.txt" into table business;

6)按需求查询数据
(1)查询在2017年4月份购买过的顾客及总人数

select name,count(*) over () 
from business 
where substring(orderdate,1,7) = '2017-04' 
group by name;

(2)查询顾客的购买明细及月购买总额

select name,orderdate,cost,sum(cost) over(partition by month(orderdate)) from
 business;

(3)上述的场景, 将每个顾客的cost按照日期进行累加

select name,orderdate,cost, 
sum(cost) over() as sample1,--所有行相加 
sum(cost) over(partition by name) as sample2,--按name分组,组内数据相加 
sum(cost) over(partition by name order by orderdate) as sample3,--按name分组,组内数据累加 
sum(cost) over(partition by name order by orderdate rows between UNBOUNDED PRECEDING and current row ) as sample4 ,--和sample3一样,由起点到当前行的聚合 
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING and current row) as sample5, --当前行和前面一行做聚合 
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING AND 1 FOLLOWING ) as sample6,--当前行和前边一行及后面一行 
sum(cost) over(partition by name order by orderdate rows between current row and UNBOUNDED FOLLOWING ) as sample7 --当前行及后面所有行 
from business;

rows必须跟在Order by 子句之后,对排序的结果进行限制,使用固定的行数来限制分区中的数据行数量

(4)查看顾客上次的购买时间

select name,orderdate,cost, 
lag(orderdate,1,'1900-01-01') over(partition by name order by orderdate ) as time1, lag(orderdate,2) over (partition by name order by orderdate) as time2 
from business;

(5)查询前20%时间的订单信息

select * from (
    select name,orderdate,cost, ntile(5) over(order by orderdate) sorted
    from business
) t
where sorted = 1;

七、Rank

1)函数说明

  • RANK() 排序相同时会重复,总数不会变
  • DENSE_RANK() 排序相同时会重复,总数会减少
  • ROW_NUMBER() 会根据顺序计算
    2)数据准备
namesubjectscore
孙悟空语文87
孙悟空数学95
孙悟空英语68
大海语文94
大海数学56
大海英语84
宋宋语文64
宋宋数学86
宋宋英语84
婷婷语文65
婷婷数学85
婷婷英语78

3)需求
计算每门学科成绩排名。
4)创建本地score.txt,导入数据

[atguigu@hadoop102 datas]$ vi score.txt

5)创建hive表并导入数据

create table score(
name string,
subject string, 
score int) 
row format delimited fields terminated by "\t";
load data local inpath '/opt/module/datas/score.txt' into table score;

6)按需求查询数据

select name,
subject,
score,
rank() over(partition by subject order by score desc) rp,
dense_rank() over(partition by subject order by score desc) drp,
row_number() over(partition by subject order by score desc) rmp
from score;
name    subject score   rp      drp     rmp
孙悟空  数学    95      1       1       1
宋宋    数学    86      2       2       2
婷婷    数学    85      3       3       3
大海    数学    56      4       4       4
宋宋    英语    84      1       1       1
大海    英语    84      1       1       2
婷婷    英语    78      3       2       3
孙悟空  英语    68      4       3       4
大海    语文    94      1       1       1
孙悟空  语文    87      2       2       2
婷婷    语文    65      3       3       3
宋宋    语文    64      4       4       4

八、其他常用函数

1. 常用日期函数

unix_timestamp:返回当前或指定时间的时间戳
select unix_timestamp();
select unix_timestamp(“2020-10-28”,‘yyyy-MM-dd’);

from_unixtime:将时间戳转为日期格式
select from_unixtime(1603843200);

current_date:当前日期
select current_date;

current_timestamp:当前的日期加时间
select current_timestamp;

to_date:抽取日期部分
select to_date(‘2020-10-28 12:12:12’);

year:获取年
select year(‘2020-10-28 12:12:12’);

month:获取月
select month(‘2020-10-28 12:12:12’);

day:获取日
select day(‘2020-10-28 12:12:12’);

hour:获取时
select hour(‘2020-10-28 12:12:12’);

minute:获取分
select minute(‘2020-10-28 12:12:12’);

second:获取秒
select second(‘2020-10-28 12:12:12’);

weekofyear:当前时间是一年中的第几周
select weekofyear(‘2020-10-28 12:12:12’);

dayofmonth:当前时间是一个月中的第几天
select dayofmonth(‘2020-10-28 12:12:12’);

months_between: 两个日期间的月份
select months_between(‘2020-04-01’,‘2020-10-28’);

add_months:日期加减月
select add_months(‘2020-10-28’,-3);

datediff:两个日期相差的天数
select datediff(‘2020-11-04’,‘2020-10-28’);

date_add:日期加天数
select date_add(‘2020-10-28’,4);

date_sub:日期减天数
select date_sub(‘2020-10-28’,-4);

last_day:日期的当月的最后一天
select last_day(‘2020-02-30’);

date_format(): 格式化日期
select date_format(‘2020-10-28 12:12:12’,‘yyyy/MM/dd HH:mm:ss’);

2. 常用取整函数

round: 四舍五入
select round(3.14);
select round(3.54);

ceil: 向上取整
select ceil(3.14);
select ceil(3.54);

floor: 向下取整
select floor(3.14);
select floor(3.54);

3.常用字符串操作函数

upper: 转大写
select upper(‘low’);

lower: 转小写
select lower(‘low’);

length: 长度
select length(“atguigu”);

trim: 前后去空格
select trim(" atguigu ");

lpad: 向左补齐,到指定长度
select lpad(‘atguigu’,9,‘g’);

rpad: 向右补齐,到指定长度
select rpad(‘atguigu’,9,‘g’);

regexp_replace:使用正则表达式匹配目标字符串,匹配成功后替换!
SELECT regexp_replace(‘2020/10/25’, ‘/’, ‘-’);

4. 集合操作

size: 集合中元素的个数
select size(friends) from test3;

map_keys: 返回map中的key
select map_keys(children) from test3;

map_values: 返回map中的value
select map_values(children) from test3;

array_contains: 判断array中是否包含某个元素
select array_contains(friends,‘bingbing’) from test3;

sort_array: 将array中的元素排序
select sort_array(friends) from test3;

grouping_set:多维分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值