题目 1163:
排队买票
时间限制: 1Sec 内存限制: 128MB 提交: 1916 解决: 885
题目描述
有M个小孩到公园玩,门票是1元。其中N个小孩带的钱为1元,K个小孩带的钱为2元。售票员没有零钱,问这些小孩共有多少种排队方法,使得售票员总能找得开零钱。注意:两个拿一元零钱的小孩,他们的位置互换,也算是一种新的排法。(M<=10)
输入格式
输入一行,M,N,K(其中M=N+K,M<=10).
输出格式
输出一行,总的排队方案。
样例输入
复制
4 2 2
样例输出
复制
8
参考思路:
第一种情况:当一元的数量<2元的数量时,肯定不可以的
第二种情况:当1元等于2元时,运用卡特兰数计算,当然这时候记得考虑排列
第三种情况:当1元的数量大于二元的数量,正着考虑不好考虑重复的情况,所以我们翻着考虑不符合的情况,这时候我们假定前n个数是符合的且一元的等于两元的,这前面符合的数我们可以用卡特兰数,后面就是排列问题
同时引用一位大佬的题解和代码:
1. N = K
考虑当 N = K 时的特殊情况,即有 2N 个小孩,其中N个小孩带的钱为1元,另外N个小孩带的钱为2元。
此时可利用卡特兰数的通项公式简单求解:
K(n)=\frac{C(_{2n}^n)}{n+1}K(n)=n+1C(2nn)
当然,由于题目中说小孩交换位置算一种新的排队方式,所以还要再乘上 n 的全排列(乘两遍)。
2. N > K
当 N > K 时,无法直接用卡特兰数求解,这时我们可以换一种思维:无法直接求出合法的排队方式数,那就先求出非法的排队方式数,再用总的排队方式数减去,即得合法的排队方式数:
很简单:一共 M 人排队,有 M!(M 的全排列)种排队方式。
- (1) 前 2P 个小孩组成一个合法的排队,且持有 1 元的小孩和持有 2 元的小孩数量相等,皆为 P。(P = 0, 1, 2……)
- (2) 第 2P + 1 个小孩持有 2 元。
- (1) 证明满足此特征的排队均非法:
显然,由于前 2P 个小孩使得售票员“收支平衡”,第 2P + 1 个小孩到来时刚好无钱可找,所以是非法的排队。 -
(2) 证明非法的排队均满足此特征:
-
当非法队伍长度为奇数时:
<a> 如果除去最后一个孩子仍是非法排队:
去掉队尾一个小孩,进行队伍长度为偶数时的论证。<b> 如果除去最后一个孩子变为合法排队:
※ 则最后一个孩子一定持有 2 元。(一个合法排队加上一个持有 1 元的小孩并不会变成非法排队)
※ 此合法队列中持有 1 元的小孩和持有 2 元的小孩数量相等。(若持有 2 元的小孩数量较多,此队列一定是非法队列;若持有 1 元的小孩较多,则即便最后一个小孩持有 2 元也不会变为非法队列)
-
当非法队伍长度为偶数时:
则总是存在这样一个正整数 Q(2Q <= 队列长度),使得前 2Q 个小孩构成一非法排队(换言之,如果对于任意的正整数 Q,总有:前 2Q 个小孩构成的队列是合法的,那么这个队列本身也是合法的。)
于是可以对前 2Q 个小孩的非法队列进行递归论证,直到找不到这样的 Q 时,去除队尾一个小孩,进行奇数队伍论证。
-
非法排队特征:
- (1) 前 2P 个小孩组成一个合法的排队,且持有 1 元的小孩和持有 2 元的小孩数量相等,皆为 P。(P = 0, 1, 2……)
- (2) 第 2P + 1 个小孩持有 2 元。
于是我们可以把非法排队分为 3 部分:
- 前 2P 个小孩
- 第 2P + 1 个小孩
- 剩下的小孩,假设共 R 个(R = M - 2P - 1)
前 2P 个小孩组成一个合法排队,且满足:M’ = 2P,N’ = K’ = P。
于是排队数可以用卡特兰数计算。
第 2P + 1 个小孩要持有 2 元,由于前 2P 个小孩中已经用掉 P 个持有 2 元的小孩,此处还有 K - P 种选择。
最后 R 个小孩的排队方式不影响整体性质,所以全排列。
公式为:
\sum_{P=0}^KK(P)A{(_N^P)}A{(_K^P)}(K-P)R!∑P=0KK(P)A(NP)A(KP)(K−P)R!
合法的排队方法数就等于总的方法数减去非法的方法数:
M!-\sum_{P=0}^KK(P)A{(_N^P)}A{(_K^P)}(K-P)R!M!−∑P=0KK(P)A(NP)A(KP)(K−P)R!
实现代码:
#include<iostream>
using namespace std;
// 计算排列数
int a(int a1, int a2)
{
if (a2 == 0)return 1;
a2--;
int pro = a1;
for (int i = 0; i < a2; i++)
{
a1--;
pro *= a1;
}
return pro;
}
// 计算组合数
int c(int c1, int c2)
{
return a(c1, c2) / a(c2, c2);
}
// 计算卡特兰数
int catalan(int n)
{
return c(2 * n, n) / (n + 1);
}
int main()
{
int m, n, k;
cin >> m >> n >> k;
if (n < k)
cout << 0;
else
{
int sum = 0;
for (int p = 0; p <= k; p++)
{
int r = m - 2 * p - 1;
int nogood = catalan(p) * a(k, p) * a(n, p) * (k - p) * a(r, r);
sum += nogood;
}
cout << a(m, m) - sum << endl;
}
return 0;
}
最后附上我自己的代码:
#include<iostream>
using namespace std;
int f(int n)
{
int s=1;
for(int i=2;i<=n;i++)
s*=i;
return s;
}
int main()
{
int m,n,k;
cin>>m>>n>>k;
if(n<k)cout<<"0"<<endl;
else if(n==k)
{
int x=f(2*n);
int y=x/(n+1);
printf("%d\n",y);
}
else
{
int s=k*f(m-1);
for(int i=1;i<k;i++)
{
int x=f(2*i);
int y=x/(i+1);
y*=(k-i)*f(m-2*i-1)*f(n)/f(n-i)*f(k)/f(k-i)/f(i)/f(i);
s+=y;
}
printf("%d\n",f(m)-s);
}
}