C语言网排队买票

题目 1163: 

排队买票

时间限制: 1Sec 内存限制: 128MB 提交: 1916 解决: 885

题目描述

有M个小孩到公园玩,门票是1元。其中N个小孩带的钱为1元,K个小孩带的钱为2元。售票员没有零钱,问这些小孩共有多少种排队方法,使得售票员总能找得开零钱。注意:两个拿一元零钱的小孩,他们的位置互换,也算是一种新的排法。(M<=10)

输入格式

输入一行,M,N,K(其中M=N+K,M<=10).

输出格式

输出一行,总的排队方案。

样例输入

复制

4 2 2

样例输出

复制

8

参考思路:

第一种情况:当一元的数量<2元的数量时,肯定不可以的

第二种情况:当1元等于2元时,运用卡特兰数计算,当然这时候记得考虑排列

第三种情况:当1元的数量大于二元的数量,正着考虑不好考虑重复的情况,所以我们翻着考虑不符合的情况,这时候我们假定前n个数是符合的且一元的等于两元的,这前面符合的数我们可以用卡特兰数,后面就是排列问题

同时引用一位大佬的题解和代码:

1. N = K

考虑当 N = K 时的特殊情况,即有 2N 个小孩,其中N个小孩带的钱为1元,另外N个小孩带的钱为2元。

此时可利用卡特兰数的通项公式简单求解:

K(n)=\frac{C(_{2n}^n)}{n+1}K(n)=n+1C(2nn​)​

当然,由于题目中说小孩交换位置算一种新的排队方式,所以还要再乘上 n 的全排列(乘两遍)。

2. N > K

当 N > K 时,无法直接用卡特兰数求解,这时我们可以换一种思维:无法直接求出合法的排队方式数,那就先求出非法的排队方式数,再用总的排队方式数减去,即得合法的排队方式数:

总的排队方式数:

很简单:一共 M 人排队,有 M!(M 的全排列)种排队方式。

非法的排队方式数:

我们考虑一下非法的排队方式有什么特征:

  • (1) 前 2P 个小孩组成一个合法的排队,且持有 1 元的小孩和持有 2 元的小孩数量相等,皆为 P。(P = 0, 1, 2……)
  • (2) 第 2P + 1 个小孩持有 2 元。

证明:

  • (1) 证明满足此特征的排队均非法:
    显然,由于前 2P 个小孩使得售票员“收支平衡”,第 2P + 1 个小孩到来时刚好无钱可找,所以是非法的排队。
  • (2) 证明非法的排队均满足此特征:

    • 当非法队伍长度为奇数时:

      <a> 如果除去最后一个孩子仍是非法排队:
      去掉队尾一个小孩,进行队伍长度为偶数时的论证。

      <b> 如果除去最后一个孩子变为合法排队:

      ※ 则最后一个孩子一定持有 2 元。(一个合法排队加上一个持有 1 元的小孩并不会变成非法排队)

      ※ 此合法队列中持有 1 元的小孩和持有 2 元的小孩数量相等。(若持有 2 元的小孩数量较多,此队列一定是非法队列;若持有 1 元的小孩较多,则即便最后一个小孩持有 2 元也不会变为非法队列)

    • 当非法队伍长度为偶数时:
      则总是存在这样一个正整数 Q(2Q <= 队列长度),使得前 2Q 个小孩构成一非法排队(换言之,如果对于任意的正整数 Q,总有:前 2Q 个小孩构成的队列是合法的,那么这个队列本身也是合法的。)
      于是可以对前 2Q 个小孩的非法队列进行递归论证,直到找不到这样的 Q 时,去除队尾一个小孩,进行奇数队伍论证。

计算公式:

非法排队特征:

  • (1) 前 2P 个小孩组成一个合法的排队,且持有 1 元的小孩和持有 2 元的小孩数量相等,皆为 P。(P = 0, 1, 2……)
  • (2) 第 2P + 1 个小孩持有 2 元。

于是我们可以把非法排队分为 3 部分:

  • 前 2P 个小孩
  • 第 2P + 1 个小孩
  • 剩下的小孩,假设共 R 个(R = M - 2P - 1)

前 2P 个小孩组成一个合法排队,且满足:M’ = 2P,N’ = K’ = P。
于是排队数可以用卡特兰数计算。
第 2P + 1 个小孩要持有 2 元,由于前 2P 个小孩中已经用掉 P 个持有 2 元的小孩,此处还有 K - P 种选择。
最后 R 个小孩的排队方式不影响整体性质,所以全排列。

公式为:

\sum_{P=0}^KK(P)A{(_N^P)}A{(_K^P)}(K-P)R!∑P=0K​K(P)A(NP​)A(KP​)(K−P)R!

合法的排队方式数:

合法的排队方法数就等于总的方法数减去非法的方法数:

M!-\sum_{P=0}^KK(P)A{(_N^P)}A{(_K^P)}(K-P)R!M!−∑P=0K​K(P)A(NP​)A(KP​)(K−P)R!

实现代码:

 
  1. #include<iostream>
  2. using namespace std;
  3. // 计算排列数
  4. int a(int a1, int a2)
  5. {
  6. if (a2 == 0)return 1;
  7. a2--;
  8. int pro = a1;
  9. for (int i = 0; i < a2; i++)
  10. {
  11. a1--;
  12. pro *= a1;
  13. }
  14. return pro;
  15. }
  16. // 计算组合数
  17. int c(int c1, int c2)
  18. {
  19. return a(c1, c2) / a(c2, c2);
  20. }
  21. // 计算卡特兰数
  22. int catalan(int n)
  23. {
  24. return c(2 * n, n) / (n + 1);
  25. }
  26. int main()
  27. {
  28. int m, n, k;
  29. cin >> m >> n >> k;
  30. if (n < k)
  31. cout << 0;
  32. else
  33. {
  34. int sum = 0;
  35. for (int p = 0; p <= k; p++)
  36. {
  37. int r = m - 2 * p - 1;
  38. int nogood = catalan(p) * a(k, p) * a(n, p) * (k - p) * a(r, r);
  39. sum += nogood;
  40. }
  41. cout << a(m, m) - sum << endl;
  42. }
  43. return 0;
  44. }

最后附上我自己的代码:

 #include<iostream>
using namespace std;
int f(int n)
{
    int s=1;
    for(int i=2;i<=n;i++)
    s*=i;
    return s;
}
int main()
{
    int m,n,k;
    cin>>m>>n>>k;
    if(n<k)cout<<"0"<<endl;
    else if(n==k)
    {
        int x=f(2*n);
        int y=x/(n+1);
        printf("%d\n",y);
    }
    else
    {
        int s=k*f(m-1);
        for(int i=1;i<k;i++)
        {
            int x=f(2*i);
            int y=x/(i+1);
            y*=(k-i)*f(m-2*i-1)*f(n)/f(n-i)*f(k)/f(k-i)/f(i)/f(i);
            s+=y;
        }
        printf("%d\n",f(m)-s);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值