171031_扭矩和功率的计算公式推导及记忆方法

扭矩和功率及转速的关系式,是电机学中常用的关系式,近期在百度知道上常有看到关于扭矩和功率及转速的相关计算式的问答,一般回答者都是直接给出计算公式,公式中的常数采用近似值,常数往往不容易记住,本文的目的就是帮助大家方便的记住这些公式,并在工程应用中熟练的使用。

记住扭矩和功率的公式形式

  扭矩和功率及转速的关系式一般用于描述电机的转轴的做功问题,扭矩越大,轴功率越大;转速越高,轴功率越大,扭矩和转速都是产生轴功率的必要条件,扭矩为零或转速为零,输出轴功率为零。因此,电机空转或堵转就是轴功率等于零的两个特例。
  功率和扭矩及转速成正比,扭矩和功率的关系式具有如下形式:

  P=aTN

  上式中,a为常数,对应的有:

  T=(1/a)(1/N)P

  即扭矩和功率成正比,和转速成反比。
记忆方法:
  记住扭矩T和功率P成正比,扭矩T和转速N成反比,而系数a不必记忆。

记住力做功的基本公式

  提问者通常都知道上述关系式,问题的焦点在于常数a的具体数值。
  如果不是经常使用该公式,的确很难记住这个常数,本人亦是如此。
  不过,只要记住扭矩和转速公式的推导方式,可以很快推导出结果,得到系数a的准确值。
  我们知道力学中力做功的功率计算公式为:

  P=FV (2)

  上述公式为力做功的基本公式。然而,基本公式中没有出现扭矩T和转速N。
  如果我们注意到:扭矩实际上就是力学上的力矩。就很容易联想到扭矩T和力F的关系。
  由于力矩等于力F和力臂的乘积,而力臂是轴的半径r,因此有:

  T=Fr

  F=T/r(3)
扭矩和力臂的关系
图2 扭矩和力臂的关系
记忆方法:

  扭矩的单位是N.mN是力的单位,m是长度的单位,因此,力等于扭矩除以长度,而长度就是半径r

掌握角速度和速度的转换方法

  第二节告诉我们,扭矩与轴的半径有关,可是,扭矩和功率的关系式(1)中,并无轴半径的参数r,也无力做功基本公式(2)中的速度V。
  这就引导我们去思考,将速度V变换为转速N后,转速N与扭矩T相乘,应该可以抵消掉轴半径r。实际正是如此:
  电动机轴面上任意一点的速度与旋转的角速度及轴半径成正比,即:

  V=ωr(4)

记忆方法:
  圆弧的长度等于角度乘以半径,圆周运动的速度等于角速度乘以半径。

扭矩和功率的基本公式

  将式(3)和(4)代入式(2),得到:

  P=Tω(5)

  式(5)为扭矩和功率的基本公式,这个公式,我们可以按照上述方式推导,不过最好的办法还是直接记住。
记忆方法:
  角速度ω和转速N都可以反映转速,采用角速度时,扭矩和功率成正比,扭矩和转速成反比,且正反比的系数均为1,因此,这是扭矩和功率的基本公式。

单位转换

  至此,我们还是没有得出扭矩和功率关系式(1)中的常数a。那么,前面的推导,是否过于繁琐呢?
  当然不是,实际上,式(5)和式(1)具有相同的含义,区别仅仅在于变量的单位。
  而一个公式中,如果单位不确定,常数是没有意义的。
  式(5)中,P、T和ω均采用标准单位,分别为瓦特(W)、牛顿.米(N.m)和弧度/秒(rad/s)。
  式(1)中,若扭矩和功率的单位不变,转速N采用常用的转/分(r/min)。
  由于一圈等于2π弧度,1分钟等于60秒,式(5)变换为:
  P=(2π/60)TN
  若功率P采用kW为单位,上式变换为:

  P=(2π/60000)TN

  60000/2π≈9549代入上式得到:

  P≈TN/9549


  T≈9549P/N  (6)

  式(6)就是最常用的扭矩和功率计算公式。
  若功率较小,单位采用瓦特,式(6)的常数需要除以1000。若转速单位采用转每秒,式(6)的常数需要乘以60。
  式(6)和式(5)的区别仅仅在于单位的选择,而式(5)才是扭矩和功率的基本公式。

扭矩和功率及转速关系式记忆方法:

  扭矩和功率的基本公式为P=Tω,角速度ω可用转速N替代,只要记住使用公式的变量和基本公式中变量的单位转换关系,就可以方便的推导出各种扭矩和功率的计算公式及相关常数的准确数值

  对于经常要换算扭矩和功率的同学,推荐收藏以下在线计算工具至手机,随时打开就可以计算!

https://www.vfe.cc/gonglvniuju/

<think>好的,用户想了解功率扭矩之间的关系。首先需要明确这两个概念的定义。功率通常指做功的速率,而扭矩是旋转力的力矩。接下来要找出它们之间的物理关系,可能涉及公式推导。 记得物理中的基本公式,功率等于力乘以速度,但在旋转系统中,力转化为扭矩,速度转化为角速度。所以功率P等于扭矩T乘以角速度ω,即P = T × ω。角速度通常用转速(RPM)表示,可能需要将单位转换考虑进去,比如将RPM转换为弧度每秒。 需要确认单位转换的步骤。例如,1 RPM等于2π/60弧度每秒。所以公式中的角速度ω = (2π × RPM)/60。代入后,功率P = T × (2π × RPM)/60,整理后得到P = (T × RPM)/9550,其中9550是转换系数(60000/(2π)≈9550)。 还需要解释这个公式的实际应用,比如在汽车发动机中,功率扭矩如何影响车辆性能。高扭矩通常意味着更好的加速能力,而高功率影响最高速度。 检查是否需要补充其他影响因素,比如传动系统效率,但用户的问题可能只需要基础关系。确保解释清晰,分点说明,避免步骤词汇,符合用户的任务要求。最后生成相关问题,考虑用户可能进一步想知道的内容,如单位转换、实际应用中的表现或如何优化等。</think>功率(单位:kW)与扭矩(单位:N·m)的关系可通过物理学公式推导。两者在旋转运动中的关系式为: $$ P = \frac{T \times n}{9550} $$ 其中: - $P$ 为功率 - $T$ 为扭矩 - $n$ 为转速(单位:r/min) - 9550 为转换系数(由单位换算得出) **物理推导过程:** 1. 角速度公式 $\omega = \frac{2\pi n}{60}$,将转速转换为弧度/秒 2. 功率基本公式 $P = T \times \omega$,代入角速度表达式后: $$ P = T \times \frac{2\pi n}{60} $$ 3. 单位换算时将功率单位转换为千瓦(kW),扭矩单位保持N·m,最终推导出: $$ P(kW) = \frac{T(N·m) \times n(r/min)}{9550} $$ **工程应用表现:** - 相同功率下,低转速发动机扭矩更大(如柴油发动机) - 涡轮增压技术通过提升进气量同时增加扭矩功率 - 电动车电机特性曲线显示零转速时即可输出最大扭矩 **数据验证示例:** 某发动机在5000r/min时输出200N·m扭矩,计算功率: ```python T = 200 # N·m n = 5000 # r/min P = (T * n) / 9550 print(f"{P:.1f} kW") # 输出104.7 kW ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值