codeforces 851C 数学

简要题意:给出 n 5维坐标系下的点,问有多少点满足任意两个点与其连线成的夹角必然大于等于 π/2

先考虑在二维平面下满足要求的点,以这个点为原点做平面直角坐标系,则该平面除原点外至多只会包含 4 个点,这四个点分别处于不同象限。否则,答案为0
这里写图片描述
对于 k 维平面,除原点外这样的点至多包含2k个。

因此当点数多于11个,答案必然不存在。否则我们暴力即可。(直接暴力也能过就是了= =!)

#include <bits/stdc++.h>

using namespace std;

const double pi = acos(-1.0);
typedef long long LL;

int n;

struct Point {
    int a, b, c, d, e;
    void in() {
        scanf("%d%d%d%d%d", &a, &b, &c, &d, &e);
    }
    Point operator - (const Point & rhs) const {
        return {a-rhs.a, b-rhs.b, c-rhs.c, d-rhs.d, e-rhs.e};
    }
    double operator * (const Point & rhs) const {
        return a*rhs.a + b*rhs.b + c*rhs.c + d*rhs.d + e*rhs.e;
    }
} point[12];

double len(Point a) {
    return sqrt(a*a);
}

int main() {
    scanf("%d", &n);
    if(n > 11) return 0 * puts("0");
    else {
        vector<int> res;
        for(int i = 0; i < n; i++) point[i].in();
        for(int i = 0; i < n; i++) {
            bool sign = 1;
            for(int j = 0; j < n; j++) {
                for(int k = 0; k < n; k++) {
                    if(i != j && j != k && i != k) {
                        Point x = point[j]-point[i];
                        Point y = point[k]-point[i];
                        if(acos(x * y / len(x) / len(y)) < acos(-1.0)/2)
                            sign = 0;
                    }
                }
            }
            if(sign) res.push_back(i+1);
        }
        cout<<res.size()<<endl;
        for(int i = 0; i < res.size(); i++)
            cout<<res[i]<<" ";
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值