codeforces 851C 数学

简要题意:给出 n 5维坐标系下的点,问有多少点满足任意两个点与其连线成的夹角必然大于等于 π/2

先考虑在二维平面下满足要求的点,以这个点为原点做平面直角坐标系,则该平面除原点外至多只会包含 4 个点,这四个点分别处于不同象限。否则,答案为0
这里写图片描述
对于 k 维平面,除原点外这样的点至多包含2k个。

因此当点数多于11个,答案必然不存在。否则我们暴力即可。(直接暴力也能过就是了= =!)

#include <bits/stdc++.h>

using namespace std;

const double pi = acos(-1.0);
typedef long long LL;

int n;

struct Point {
    int a, b, c, d, e;
    void in() {
        scanf("%d%d%d%d%d", &a, &b, &c, &d, &e);
    }
    Point operator - (const Point & rhs) const {
        return {a-rhs.a, b-rhs.b, c-rhs.c, d-rhs.d, e-rhs.e};
    }
    double operator * (const Point & rhs) const {
        return a*rhs.a + b*rhs.b + c*rhs.c + d*rhs.d + e*rhs.e;
    }
} point[12];

double len(Point a) {
    return sqrt(a*a);
}

int main() {
    scanf("%d", &n);
    if(n > 11) return 0 * puts("0");
    else {
        vector<int> res;
        for(int i = 0; i < n; i++) point[i].in();
        for(int i = 0; i < n; i++) {
            bool sign = 1;
            for(int j = 0; j < n; j++) {
                for(int k = 0; k < n; k++) {
                    if(i != j && j != k && i != k) {
                        Point x = point[j]-point[i];
                        Point y = point[k]-point[i];
                        if(acos(x * y / len(x) / len(y)) < acos(-1.0)/2)
                            sign = 0;
                    }
                }
            }
            if(sign) res.push_back(i+1);
        }
        cout<<res.size()<<endl;
        for(int i = 0; i < res.size(); i++)
            cout<<res[i]<<" ";
    }
    return 0;
}
内容概要:《2024年中国物联网产业创新白皮书》由深圳市物联网产业协会与AIoT星图研究院联合编制,汇集了全国30多个省市物联网组织的智慧。白皮书系统梳理了中国物联网产业的发展历程、现状及未来趋势,涵盖了物联网的概念、产业结构、市场规模、投融资情况、面临的问题与机遇。书中详细分析了感知层、传输层、平台层及应用层的关键技术,探讨了智慧城市、智能工业、车联网、智慧医疗等九大产业物联网应用领域,以及消费物联网的发展特征与热门单品。此外,白皮书还关注了物联网数据安全、法规遵从、人才短缺等挑战,并提出了相应的解决方案。 适用人群:物联网从业者、企业决策者、政策制定者及相关研究机构。 使用场景及目标:①帮助从业者深入了解物联网产业的现状和发展趋势;②为企业决策者提供战略规划依据;③为政策制定者提供政策支持和法规制定参考;④为研究机构提供详尽的数据和案例支持。 其他说明:白皮书不仅限于技术科普,更从宏观角度结合市场情况,多维度讨论了物联网产业生态,旨在为物联网企业、从业者找到最适合的技术应用场景,促进产业健康发展。报告还特别鸣谢了参与市场调研的企业,感谢他们提供的宝贵行业信息。由于时间和资源的限制,报告可能存在信息不充分之处,欢迎各界人士提出宝贵意见。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值