codeforces 851C 数学

简要题意:给出 n 5维坐标系下的点,问有多少点满足任意两个点与其连线成的夹角必然大于等于 π/2

先考虑在二维平面下满足要求的点,以这个点为原点做平面直角坐标系,则该平面除原点外至多只会包含 4 个点,这四个点分别处于不同象限。否则,答案为0
这里写图片描述
对于 k 维平面,除原点外这样的点至多包含2k个。

因此当点数多于11个,答案必然不存在。否则我们暴力即可。(直接暴力也能过就是了= =!)

#include <bits/stdc++.h>

using namespace std;

const double pi = acos(-1.0);
typedef long long LL;

int n;

struct Point {
    int a, b, c, d, e;
    void in() {
        scanf("%d%d%d%d%d", &a, &b, &c, &d, &e);
    }
    Point operator - (const Point & rhs) const {
        return {a-rhs.a, b-rhs.b, c-rhs.c, d-rhs.d, e-rhs.e};
    }
    double operator * (const Point & rhs) const {
        return a*rhs.a + b*rhs.b + c*rhs.c + d*rhs.d + e*rhs.e;
    }
} point[12];

double len(Point a) {
    return sqrt(a*a);
}

int main() {
    scanf("%d", &n);
    if(n > 11) return 0 * puts("0");
    else {
        vector<int> res;
        for(int i = 0; i < n; i++) point[i].in();
        for(int i = 0; i < n; i++) {
            bool sign = 1;
            for(int j = 0; j < n; j++) {
                for(int k = 0; k < n; k++) {
                    if(i != j && j != k && i != k) {
                        Point x = point[j]-point[i];
                        Point y = point[k]-point[i];
                        if(acos(x * y / len(x) / len(y)) < acos(-1.0)/2)
                            sign = 0;
                    }
                }
            }
            if(sign) res.push_back(i+1);
        }
        cout<<res.size()<<endl;
        for(int i = 0; i < res.size(); i++)
            cout<<res[i]<<" ";
    }
    return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值