Spark SQL下的Parquet使用最佳实践和代码实战

一、Spark SQL下的Parquet使用最佳实践

1)过去整个业界对大数据的分析的技术栈的Pipeline一般分为以下两种方式:

a)Data Source -> HDFS -> MR/Hive/Spark(相当于ETL)-> HDFS Parquet -> Spark SQL/Impala -> ResultService(可以放在DB中,也有可能被通过JDBC/ODBC来作为数据服务使用);

b)Data Source -> Real timeupdate data to HBase/DB -> Export to Parquet -> Spark SQL/Impala -> ResultService(可以放在DB中,也有可能被通过JDBC/ODBC来作为数据服务使用);

上述的第二种方式完全可以通过Kafka+Spark Streaming+Spark SQL(内部也强烈建议采用Parquet的方式来存储数据)的方式取代

2)期待的方式:DataSource -> Kafka -> Spark Streaming -> Parquet -> Spark SQL(ML、GraphX等)-> Parquet -> 其它各种Data Mining等。


二、Parquet的精要介绍

1)Parquet是列式存储格式的一种文件类型,列式存储有以下的核心优势:

a)可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量。

b)压缩编码可以降低磁盘存储空间。由于同一列的数据类型是一样的,可以使用更高效的压缩编码(例如RunLength Encoding和Delta Encoding)进一步节约存储空间。

c)只读取需要的列,支持向量运算,能够获取更好的扫描性能。


三、代码实战

Java版本:

package com.dt.spark.SparkApps.sql;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
public class SparkSQLParquetOps {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setMaster("local").setAppName("SparkSQLParquetOps");
        JavaSparkContext sc = new JavaSparkContext(conf);
        SQLContext sqlContext = new SQLContext(sc);
        DataFrame usersDF = sqlContext.read().parquet("E:\\Spark\\Sparkinstanll_package\\Big_Data_Software\\spark-1.6.0-bin-hadoop2.6\\examples\\src\\main\\resources\\users.parquet");
        /**
         * 注册成为临时表以供后续的SQL查询操作
         */
        usersDF.registerTempTable("users");
        /**
         * 进行数据的多维度分析
         */
        DataFrame result = sqlContext.sql("select * from users");
        JavaRDD<String> resultRDD = result.javaRDD().map(new Function<Row, String>() {
            @Override
            public String call(Row row) throws Exception {
                return "The name is : " + row.getAs("name");
            }
        });
        /**
         * 第六步:对结果进行处理,包括由DataFrame转换成为RDD<Row>,以及结构持久化
         */
        List<String> listRow = resultRDD.collect();
        for(String row : listRow){
            System.out.println(row);
        }
    }
}


Schema Merging

Java版本:

package com.dt.spark.SparkApps.sql;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import scala.Tuple2;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class SchemaOps {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setMaster("local").setAppName("RDD2DataFrameByProgramatically");
        JavaSparkContext sc = new JavaSparkContext(conf);
        SQLContext sqlContext = new SQLContext(sc);
        
        // Create a simple DataFrame, stored into a partition directory
        JavaRDD<Integer> lines = sc.parallelize(Arrays.asList(1,2,3,4,5));
        PairFunction<Integer,Integer,Integer> df2 = new PairFunction<Integer,Integer,Integer>() {
            @Override
            public Tuple2 call(Integer x) throws Exception {
                return new Tuple2(x,x * 2);
            }
        };
        JavaPairRDD<Integer,Integer> pairs = lines.mapToPair(df2);
        /**
         * 第一步:在RDD的基础上创建类型为Row的RDD
         */
        JavaRDD<Row> personsRDD = pairs.map(new Function<Tuple2<Integer, Integer>, Row>() {
            @Override
            public Row call(Tuple2<Integer, Integer> integerIntegerTuple2) throws Exception {
                return RowFactory.create(integerIntegerTuple2._1,integerIntegerTuple2._2);
            }
        });
        /**
         * 第二步:动态构造DataFrame的元数据,一般而言,有多少列,以及每列的具体类型可能来自于JSON文件
         * 也可能来自于数据库。
         * 指定类型
         */
        List<StructField> structFields = new ArrayList<StructField>();
        structFields.add(DataTypes.createStructField("single",DataTypes.IntegerType,true));
        structFields.add(DataTypes.createStructField("double",DataTypes.IntegerType,true));
        /**
         * 构建StructType用于最后DataFrame元数据的描述
         */
        StructType structType = DataTypes.createStructType(structFields);
        /**
         * 第三步:基于以后的MetaData以及RDD<Row>来构建DataFrame
         */
        DataFrame personsDF = sqlContext.createDataFrame(personsRDD,structType);
        personsDF.write().parquet("data/test_table/key=1");
        // Create a simple DataFrame, stored into a partition directory
        JavaRDD<Integer> lines1 = sc.parallelize(Arrays.asList(6,7,8,9,10));
        PairFunction<Integer,Integer,Integer> df3 = new PairFunction<Integer,Integer,Integer>() {
            @Override
            public Tuple2 call(Integer x) throws Exception {
                return new Tuple2(x,x * 2);
            }
        };
        JavaPairRDD<Integer,Integer> pairs1 = lines.mapToPair(df2);
        /**
         * 第一步:在RDD的基础上创建类型为Row的RDD
         */
        JavaRDD<Row> personsRDD1 = pairs1.map(new Function<Tuple2<Integer, Integer>, Row>() {
            @Override
            public Row call(Tuple2<Integer, Integer> integerIntegerTuple2) throws Exception {
                return RowFactory.create(integerIntegerTuple2._1,integerIntegerTuple2._2);
            }
        });
        /**
         * 第二步:动态构造DataFrame的元数据,一般而言,有多少列,以及每列的具体类型可能来自于JSON文件
         * 也可能来自于数据库。
         * 指定类型
         */
        List<StructField> structFields1 = new ArrayList<StructField>();
        structFields.add(DataTypes.createStructField("single",DataTypes.IntegerType,true));
        structFields.add(DataTypes.createStructField("triple",DataTypes.IntegerType,true));
        /**
         * 构建StructType用于最后DataFrame元数据的描述
         */
        StructType structType1 = DataTypes.createStructType(structFields);
        /**
         * 第三步:基于以后的MetaData以及RDD<Row>来构建DataFrame
         */
        DataFrame personsDF1 = sqlContext.createDataFrame(personsRDD1,structType1);
        personsDF1.write().parquet("data/test_table/key=2");
        DataFrame df4 = sqlContext.read().option("mergeSchema","true").parquet("data/test_table");
        df4.printSchema();
    }
}

输出结果如下:

root
|--single: integer (nullable = true)
|--double: integer (nullable = true)
|--single2: integer (nullable = true)
|--triple: integer (nullable = true)
|--key: integer (nullable = true)
复制代码

Scala版本:


// sqlContext from the previous example is used in this example.
// This is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._

// Create a simple DataFrame, stored into a partition directory
val df1 = sc.makeRDD(1 to 5).map(i => (i, i * 2)).toDF("single", "double")
df1.write.parquet("data/test_table/key=1")

// Create another DataFrame in a new partition directory,
// adding a new column and dropping an existing column
val df2 = sc.makeRDD(6 to 10).map(i => (i, i * 3)).toDF("single", "triple")
df2.write.parquet("data/test_table/key=2")

// Read the partitioned table
val df3 = sqlContext.read.option("mergeSchema", "true").parquet("data/test_table")
df3.printSchema()

// The final schema consists of all 3 columns in the Parquet files together
// with the partitioning column appeared in the partition directory paths.
// root
// |-- single: int (nullable = true)
// |-- double: int (nullable = true)
// |-- triple: int (nullable = true)
// |-- key : int (nullable = true)


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值