matlab中x0=[x0,x0] 矩阵扩展

就是说对矩阵x0进行扩展,左右各一个x0组成的新的矩阵赋值给x0。
比如:
x0=[1,2;3,4]
x0 =

     1     2
     3     4

x0=[x0,x0]
x0 =

     1     2     1     2
     3     4     3     4
这道题需要先进行状态观测器的设计,再进行状态反馈的设计。 观测器的设计: 根据题目要求,观测器的极点为-2,-2。因此,我们可以使用MATLAB的place函数来计算观测器的增益矩阵L: ``` A = [0, 1; -1, 0]; C = [1, 0]; P = [-2, -2]; L = place(A', C', P)'; ``` 其,A'和C'分别是系统的状态矩阵和输出矩阵的转置,P是指定的极点位置。L是观测器的增益矩阵。 状态反馈的设计: 接下来,我们需要计算状态反馈矩阵L。根据控制理论知识,状态反馈矩阵可以使用极点配置法来进行设计。我们可以选择极点位置为-3和-4,然后使用place函数计算状态反馈矩阵: ``` B = [0; 1]; P = [-3, -4]; K = place(A, B, P); ``` 其,A和B分别是系统的状态矩阵和输入矩阵,P是指定的极点位置。K是状态反馈矩阵。 最后,我们可以将观测器和状态反馈器组合起来,得到整个控制系统的MATLAB程序: ``` A = [0, 1; -1, 0]; B = [0; 1]; C = [1, 0]; x0 = [2; 3]; % 观测器设计 P = [-2, -2]; L = place(A', C', P)'; % 状态反馈设计 P = [-3, -4]; K = place(A, B, P); % 控制系统闭环 Acl = [A-B*K, B*K; zeros(size(A)), A-L*C]; Bcl = [zeros(size(B)); eye(size(B))]; Ccl = [C, zeros(size(C))]; Dcl = 0; sys_cl = ss(Acl, Bcl, Ccl, Dcl); % 模拟控制系统响应 t = 0:0.01:10; u = zeros(size(t)); y0 = [x0; zeros(size(x0))]; lsim(sys_cl, u, t, y0); ``` 其,sys_cl是控制系统的闭环模型,可以使用MATLAB的ss函数来进行建模。最后,使用lsim函数模拟控制系统的响应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值