【leetcode】Decode Ways

本文详细解析了一种字符串解码算法的实现思路及代码细节,通过动态规划的方法解决了字符串的有效解码方式计数问题,并讨论了特殊情况的处理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

case太蛋疼了。。。。


class Solution {
public:
    int numDecodings(string s) {
        vector<int> ans(s.size()+1, 0);
        if (s.empty()) return 0;
        ans[0] = 1;
        if (s[0] == '0')
            ans[1] = 0;
        else
            ans[1] = 1;
        for (int i=2; i<=s.size(); i++) {
            int pre = s[i-2]-'0';
            int cur = s[i-1]-'0';
            int val = pre*10 + cur;
            if (cur>=1 && cur<=9)
                ans[i] = ans[i-1];
            if ((pre != 0) && (val>=1 && val<=26))
                ans[i] += ans[i-2];
        }
        return ans[s.size()];
    }

};


发现如果当前字符合法,那么和没有他的时候decode次数一样,相当于一棵tire树每一个链多了一个字母,但链数不变。

如果当前字符和前一个字符的形成的数字在[1,26]那么,需要加上Ways[i-2]的数量,而不能直接等于Ways[i-1] + Ways[i-2],比如”10“,假设到‘0’了,前面是1,这里是0,

形成的数字是10,范围合法,直接等于1处的合法范围+1(Ways[0])是不对的,因为0是不合法的,所以不能算Ways[i-1]


哎蛋疼,今天没睡好。现在起床了


内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值