【Python计量】RESET模型设定偏误检验

目录

一、导入数据

二、RESET检验

三、全套代码

对函数形式误设问题的一般检验:RESET(regression specification error test)

假设线性回归模型为

RESET检验的基本思路:如果怀疑非线性项被遗漏,那么就把非线性项引入方程,并检验其系数是否显著。

考虑做以下辅助回归:

检验拟合值的高次项系数是否联合等于0,即对:做F检验。

如果拒绝,说明模型中有高次项;反之,则接受,可使用线性模型。RESET检验的缺点是在拒绝的情况下,并不提供具体遗漏哪些高次项的信息,不能为我们该如何做提供一个现实的方向。

我们以伍德里奇《计量经济学导论:现代方法》的”第9章 模型设定和数据问题的深入探讨“的案例9.2为例,讲解如何进行RESET检验。

一、导入数据

import wooldridge as woo
import pandas as pd
import statsmodels.formula.api as smf

hprice1 = woo.dataWoo('hprice1')

二、RESET检验

我们估计住房价格模型如下&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值