目录
概述
在高等数学中,区间是指由实数构成的一段连续的数值范围。一个区间可以被表示为一个不等式形式的集合,其中包含了所有满足该不等式的实数。本文主要介绍这些概念的定义和使用方法。
-
开区间:开区间表示为(a, b),表示实数的范围在a和b之间,但不包括a和b。例如,(2, 5)表示所有大于2且小于5的实数。
-
闭区间:闭区间表示为[a, b],表示实数的范围在a和b之间,包括a和b。例如,[3, 7]表示所有大于等于3且小于等于7的实数。
-
半开半闭区间:半开半闭区间表示为[a, b),表示实数的范围在a和b之间,包括a但不包括b。例如,[1, 4)表示所有大于等于1且小于4的实数。
-
无穷区间:无穷区间表示为(-∞, +∞),表示实数的范围是整个实数轴。例如,(-∞, 6]表示所有小于等于6的实数。
1 区间
1.1 开区间
设有两个实数a和b,且a < b,使用a和b组成一个新的数集合A:
使用集合表达如下:
,a,b为开区间的两个端点。此时,数值a和数值b和集合的关系:
,
1.2 闭区间
对于集合式:
该集合可以表达为:[a,b],使用数学表达式描述为:
a和b被称为闭区间[a,b]的端点,这里:
1.3 半闭区间
数学表达式为:
2 区间的域
2.1 区间的类型
1) 有限区间
是将x控制在一定的数值区间内,例如: [a,b],区间长度可以表示为:
区间长度 length = b - a
2) 无限区间
区间只有上限,或者下限,或者上下限都没有限制,这样的区间被称之为无限区间,其数学表达式如下:
在数轴上的表达方法:
下图(a)和图(b)为有限区间,图(c)和图(d)
全体实数的集R可用如下数学公式表示如下,该区间也是一个无限区间。
R = { - ∞, + ∞}
2.2 邻域
1) 邻域定义
邻域的概念:
以点a为中心的任何开区间,称之为a的邻域。用数学方法表示为: U(a)
一个实例:
设
为任意一个正数,则在开区间(a-
,a+
)就是a的一个邻域。其也可以被称作为点a的δ邻域,使用数学表达式:U(a,δ):
使用一维坐标表述上式领域,a为领域的中心,δ称之为这个领域的半径。如下:
a-δ < x < a+δ也可以表述为: | x- a | < δ,因此:
U(a, δ) = { x||x-a| < δ }
因为|x-a|表示点x与点a之间的距离,所以,U(a,δ)表示与a距离小余δ的全体x数值。
2) 去中心邻域
不包含中心点a的邻域,使用数学表述如下:
上述式子可以表述为:
| x - a | >0 , 其中x ≠ a
3) 左右邻域
左邻域:
开区间: ( a - δ, a)
右邻域:
开区间: ( a, a + δ )
2.3 闭区间的直积
两个闭区间的直积表示xoy平面上的矩形区域:
x轴上的闭区间: x ∈ [ a,b]
y轴上的闭区间: y ∈ [ c,d]