区间的概念

目录

概述

1 区间

1.1 开区间

 1.2 闭区间

1.3 半闭区间

2 区间的域

2.1 区间的类型

2.2 邻域

2.3 闭区间的直积


概述

在高等数学中,区间是指由实数构成的一段连续的数值范围。一个区间可以被表示为一个不等式形式的集合,其中包含了所有满足该不等式的实数。本文主要介绍这些概念的定义和使用方法。

  1. 开区间:开区间表示为(a, b),表示实数的范围在a和b之间,但不包括a和b。例如,(2, 5)表示所有大于2且小于5的实数。

  2. 闭区间:闭区间表示为[a, b],表示实数的范围在a和b之间,包括a和b。例如,[3, 7]表示所有大于等于3且小于等于7的实数。

  3. 半开半闭区间:半开半闭区间表示为[a, b),表示实数的范围在a和b之间,包括a但不包括b。例如,[1, 4)表示所有大于等于1且小于4的实数。

  4. 无穷区间:无穷区间表示为(-∞, +∞),表示实数的范围是整个实数轴。例如,(-∞, 6]表示所有小于等于6的实数。

1 区间

1.1 开区间

设有两个实数a和b,且a < b,使用a和b组成一个新的数集合A:

使用集合表达如下:

x \in(a,b),a,b为开区间的两个端点。此时,数值a和数值b和集合的关系:

 , 

 1.2 闭区间

对于集合式:

该集合可以表达为:[a,b],使用数学表达式描述为:

a和b被称为闭区间[a,b]的端点,这里:

1.3 半闭区间

数学表达式为:

2 区间的域

2.1 区间的类型

1) 有限区间

是将x控制在一定的数值区间内,例如: [a,b],区间长度可以表示为:

区间长度 length = b - a 

2) 无限区间

区间只有上限,或者下限,或者上下限都没有限制,这样的区间被称之为无限区间,其数学表达式如下:

在数轴上的表达方法:

 下图(a)和图(b)为有限区间,图(c)和图(d)

全体实数的集R可用如下数学公式表示如下,该区间也是一个无限区间。

  R =  { - ∞, + ∞}

2.2 邻域

1) 邻域定义

邻域的概念:

以点a为中心的任何开区间,称之为a的邻域。用数学方法表示为: U(a)

 一个实例:

\delta为任意一个正数,则在开区间(a-\delta,a+\delta)就是a的一个邻域。其也可以被称作为点a的δ邻域,使用数学表达式:U(a,δ):

使用一维坐标表述上式领域,a为领域的中心,δ称之为这个领域的半径。如下:

 a-δ < x <  a+δ也可以表述为: | x- a | < δ,因此:

U(a, δ) = { x||x-a| < δ }

因为|x-a|表示点x与点a之间的距离,所以,U(a,δ)表示与a距离小余δ的全体x数值。

2) 去中心邻域

不包含中心点a的邻域,使用数学表述如下:

 上述式子可以表述为:

| x - a | >0 , 其中x ≠ a

3) 左右邻域

 左邻域:

开区间: ( a - δ, a)

右邻域:

开区间: ( a, a + δ ) 

2.3 闭区间的直积

两个闭区间的直积表示xoy平面上的矩形区域:

x轴上的闭区间: x ∈ [  a,b]

y轴上的闭区间: y ∈ [  c,d]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值