关系数据库理论之最小函数依赖集

前言

在本文中,会介绍为什么要引入最小函数依赖集,最小函数依赖集是什么,以及如何求最小函数依赖集。

为什么需要最小函数依赖集

在关系数据模型中,一个关系通常由R(U,F)构成,U为属性的全集,F为函数依赖集。在实际生活中,我们可以根据语义来定义关系中属性的依赖关系,例如学号可以唯一确定一位学生的姓名、性别等等。但是,有时候给出的函数依赖集并不是最简的,这有时会拖累我们对关系的后续处理,例如关系的分解、判断是否为无损分解等。所以,我们在必要时,需要对函数依赖集进行化简,这就是需要最小函数依赖集的原因。
在正式介绍最小函数依赖集之前,还需要了解一个概念,那就是闭包。准确的说是属性集X关于函数依赖集F的闭包

闭包

闭包分为两种,一种是函数依赖集F的闭包,另外一种是属性集X关于函数依赖集F的闭包。前者不做讨论,重点说说后者。先来看定义

F为属性集U上的一组函数依赖集,XY ∈ \in U X F + X_F^+ XF+= {A|X → \rightarrow A能由F根据Armstrong公理导出}, X F + X_F^+ XF+称为属性集X关于函数依赖集F的闭包。

说白了,就是给定属性集X,根据现有的函数依赖集,看其能推出什么属性。
这里的Armstrong公理系统不用深究,想具体了解的可以点击查看百度百科。
举例:

已知关系模式R<U,F>,其中:
U = {A,B,C,D,E},
F = {AB → \rightarrow C,B → \rightarrow D,C → \rightarrow E,EC → \rightarrow B,AC → \rightarrow B}
( A B ) F + (AB)_F^+ (AB)F+

解:

从AB出发,此时我们的集合里已经包含了{A,B}。
我们从现有的函数依赖集中可知,
AB可以推出C,于是C加入集合,
B可以推出D,于是D加入集合,
C可以推出E,于是E加入集合,
EC可以推出B,因为C、E、B都在集合中,于是不加入,
AC可以推出B,因为A、B、C都在集合中,于是不加入
至此,可求得 ( A B ) F + (AB)_F^+ (AB)F+ ={A、B、C、D、E}。

最小函数依赖集

定义

如果函数依赖集F满足下列条件,则称F为一个极小函数依赖集,亦称为最小依赖集最小覆盖
(1)、F中任一函数依赖右部仅含有一个属性。
(2)、F中不存在这样的函数依赖 X → \rightarrow A,使得FF-{X → \rightarrow A} 等价。
(3)、F中不存在这样的函数依赖X → \rightarrow AX有真子集Z使得F-{X → \rightarrow A} ⋃ \bigcup {Z → \rightarrow A}F等价。

解释

以上定义翻译成大白话就是,一个函数依赖集F要想称为最小函数依赖集,要满足以下三点:
1、F中任一函数依赖的右边只有一个属性。
2、F中不存在这样的函数依赖:从现有的函数依赖集中删除一个函数依赖X → \rightarrow A,删除后所得的函数依赖集与原来的函数依赖集等价,这样的函数依赖是不允许存在的。
3、F中不存在这样的函数依赖:假设函数依赖集中存在AB → \rightarrow Y,现对该依赖的左部进行化简,即删除A,得B → \rightarrow Y;或删除B,得A → \rightarrow Y,若经过化简后的函数依赖集与没有化简前的函数依赖集等价,那么这样的函数依赖是不允许存在的。

算法

1、首先,先利用函数依赖的分解性,将函数依赖集中右部不为单个属性的分解为单属性。

2、对于经过第1步筛选后的函数依赖集F中的每一个函数依赖X → \rightarrow A,进行以下操作:

  • 2.1、将X → \rightarrow A从函数依赖中剔除
  • 2.2、基于剔除后的函数依赖,计算属性X的闭包,看其是否包含了A,若是,则该函数依赖是多余的(这里体现出前面说的等价,因为如果基于化简后的函数依赖依赖,计算X的闭包依然包含A,则说明A可以由其他依赖推出,X → \rightarrow A不是必须的),可以删除,否则不能删除

3、对于经过第2步筛选后的函数依赖集F中每个左部不为单个属性的函数依赖AB → \rightarrow Y,进行以下操作:
我们约定,经过第二步筛选后的函数依赖集记为F1,经过第三步处理后的函数依赖集为F2。

  • 3.1、去除A,得B → \rightarrow Y,得F2,基于F1和F2计算属性B的闭包,如果二者相等,则说明它们是等价的,A可以去除;如果不相等,则A不能去除。
  • 3.2、去除B,得A → \rightarrow Y,得F2,基于F1和F2计算属性A的闭包,如果二者相等则说明它们是等价的,B可以去除;如果不相等,则B不能去除。

知识链接:函数依赖的分解性
若X → \rightarrow YZ,则X → \rightarrow Y 且 X → \rightarrow Z。

举例

关系模式R(U,F)中,U={A,B,C,D,E,G},F={B → \rightarrow D,DG → \rightarrow C,BD → \rightarrow E,AG → \rightarrow B,ADG → \rightarrow BC};求F的最小函数依赖集。

解:
1、首先根据函数依赖的分解性,对F进行第一次筛选,需要变动的有:
ADG → \rightarrow BC拆解成ADG → \rightarrow B、ADG → \rightarrow C
得新函数依赖集:
F = {B → \rightarrow D,DG → \rightarrow C,BD → \rightarrow E,AG → \rightarrow B,ADG → \rightarrow B,ADG → \rightarrow C}

2、筛选多余的函数依赖

  • 2.1:去除B → \rightarrow D,得F = {DG → \rightarrow C,BD → \rightarrow E,AG → \rightarrow B,ADG → \rightarrow B,ADG → \rightarrow C}, B F + B_F^+ BF+ = {B},不包含D,故B → \rightarrow D不删除。
  • 2.2:去除DG → \rightarrow C,得F = {B → \rightarrow D、BD → \rightarrow E,AG → \rightarrow B,ADG → \rightarrow B,ADG → \rightarrow C}, ( D G ) F + (DG)_F^+ (DG)F+={D,G},不包含C,故DG → \rightarrow C不删除。
  • 2.3:去除BD → \rightarrow E,得F = {B → \rightarrow D,DG → \rightarrow C,AG → \rightarrow B,ADG → \rightarrow B,ADG → \rightarrow C}, ( B D ) F + (BD)_F^+ (BD)F+ = {B,D},不包含E,故BD → \rightarrow E不删除。
  • 2.4:去除AG → \rightarrow B,得F = {B → \rightarrow D,DG → \rightarrow C,BD → \rightarrow E,ADG → \rightarrow B,ADG → \rightarrow C}, ( A G ) F + (AG)_F^+ (AG)F+ = {A,G},不包含B,故AG → \rightarrow B不删除。
  • 2.5:去除ADG → \rightarrow B,得F = {B → \rightarrow D,DG → \rightarrow C,BD → \rightarrow E,AG → \rightarrow B,ADG → \rightarrow C}, ( A D G ) F + (ADG)_F^+ (ADG)F+ = {A,D,G,C,B,E},包含B,故ADG → \rightarrow B去除
  • 2.6:去除ADG → \rightarrow C,得F = {B → \rightarrow D,DG → \rightarrow C,BD → \rightarrow E,AG → \rightarrow B,ADG → \rightarrow B}, ( A D G ) F + (ADG)_F^+ (ADG)F+ = {A,D,G,C,B,E},包含C,故ADG → \rightarrow C去除
    经过第二部筛选后,函数依赖集F变为{B → \rightarrow D,DG → \rightarrow C,BD → \rightarrow E,AG → \rightarrow B}。

3、化简函数依赖左侧不为单个属性的函数依赖

  • 3.1:先看DG → \rightarrow C
    • 3.1.1:去除D,得G → \rightarrow C,得函数依赖集F1 = {B → \rightarrow D,G → \rightarrow C,BD → \rightarrow E,AG → \rightarrow B}。
      基于F1,可求得 G F + G_F^+ GF+ = {G,C}。
      基于F(第二步求出的,下同),可求得 G F + G_F^+ GF+ = {G}
      可见二者并不相同,所以D不去除。
    • 3.1.2:去除G,得D → \rightarrow C,得函数依赖集F1 = {B → \rightarrow D,D → \rightarrow C,BD → \rightarrow E,AG → \rightarrow B}
      基于F1,可求得 D F + D_F^+ DF+ = {D,C}
      基于F,可求得 D F + D_F^+ DF+ ={D}
      可见二者并不相同,所以G不去除。

综上,DG → \rightarrow C,已是最简。

  • 3.2:再看BD → \rightarrow E
    • 3.2.1:去除B,得D → \rightarrow E,得函数依赖集F1 = {B → \rightarrow D,DG → \rightarrow C,D → \rightarrow E,AG → \rightarrow B}
      基于F1,可求得 D F + D_F^+ DF+ = {D,E}
      基于F,可求得 D F + D_F^+ DF+ = {D}
      可见二者并不相同,所以B不去除。
    • 3.2.2:去除D,得B → \rightarrow E,得函数依赖集F1 = {B → \rightarrow D,DG → \rightarrow C,B → \rightarrow E,AG → \rightarrow B}
      基于F1,可求得 B F + B_F^+ BF+ = {B,E,D}
      基于F,可求得 B F + B_F^+ BF+ = {B,D,E}
      可见二者相同,所以D可以去除

综上,BD → \rightarrow E,可化简为B → \rightarrow E。

  • 3.3:最后看AG → \rightarrow B
    • 3.3.1:去除A,得G → \rightarrow B,得函数依赖集F1 = {B → \rightarrow D,DG → \rightarrow C,B → \rightarrow E,G → \rightarrow B}
      基于F1,可求得 G F + G_F^+ GF+ = {G,B}
      基于F,可求得 G F + G_F^+ GF+ = {G}
      可见二者并不相同,所以A不可去除。
    • 3.3.2:去除G,得A → \rightarrow B,得函数依赖F1 = {B → \rightarrow D,DG → \rightarrow C,B → \rightarrow E,A → \rightarrow B}
      基于F1,可求得 A F + A_F^+ AF+ = {A,B}
      基于F,可求得 A F + A_F^+ AF+ = {A}
      可见二者并不相同,所以G不可去除。

综上,AG → \rightarrow B,已是最简。
综上,R的最小函数依赖集为F = {B → \rightarrow D,DG → \rightarrow C,B → \rightarrow E,AG → \rightarrow B}

写在最后

这个问题是我在考研复试的时候复习过程中遇到的,主要的纠结点在于第三步的判断上,查资料的时候发现网上很多都没有写清,最后还是在度娘的文库里找到了比较清楚的解释,在此做一下思路的整理。
本文定义以及例子参考自:

  • 665
    点赞
  • 1976
    收藏
    觉得还不错? 一键收藏
  • 72
    评论
最小函数依赖   定义:如果函数依赖F满足下列条件,则称F为最小函数依赖最小覆盖。   ① F中的任何一个函数依赖的右部仅含有一个属性;   ② F中不存在这样一个函数依赖X→A,使得F与F-{X→A}等价;   ③ F中不存在这样一个函数依赖X→A,X有真子Z使得F-{X→A}∪{Z→A}与F等价。   算法:计算最小函数依赖。   输入 一个函数依赖   输出 F的一个等价的最小函数依赖G   步骤:① 用分解的法则,使F中的任何一个函数依赖的右部仅含有一个属性;      ② 去掉多余的函数依赖:从第一个函数依赖X→Y开始将其从F中去掉,然后在剩下的函数依赖中求X的闭包X+,看X+是否包含Y,若是,则去掉X→Y;否则不能去掉,依次做下去。直到找不到冗余的函数依赖;      ③ 去掉各依赖左部多余的属性。一个一个地检查函数依赖左部非单个属性的依赖。例如XY→A,若要判Y为多余的,则以X→A代替XY→A是否等价?若A属于(X)+,则Y是多余属性,可以去掉。   举例:已知关系模式R,U={A,B,C,D,E,G},F={AB→C,D→EG,C→A,BE→C,BC→D,CG→BD,ACD→B,CE→AG},求F的最小函数依赖。   解1:利用算法求解,使得其满足三个条件   ① 利用分解规则,将所有的函数依赖变成右边都是单个属性的函数依赖,得F为:F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G}   ② 去掉F中多余的函数依赖   A.设AB→C为冗余的函数依赖,则去掉AB→C,得:F1={D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G} 闭包   计算(AB)F1+:设X(0)=AB   计算X(1):扫描F1中各个函数依赖,找到左部为AB或AB子函数依赖,因为找不到这样的函数依赖。故有X(1)=X(0)=AB,算法终止。   (AB)F1+= AB不包含C,故AB→C不是冗余的函数依赖,不能从F1中去掉。   B.设CG→B为冗余的函数依赖,则去掉CG→B,得:F2={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→A,CE→G}   计算(CG)F2+:设X(0)=CG   计算X(1):扫描F2中的各个函数依赖,找到左部为CG或CG子函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CGA=ACG。   计算X(2):扫描F2中的各个函数依赖,找到左部为ACG或ACG子函数依赖,得到一个CG→D函数依赖。故有X(2)=X(1)∪D=ACDG。   计算X(3):扫描F2中的各个函数依赖,找到左部为ACDG或ACDG子函数依赖,得到两个ACD→B和D→E函数依赖。故有X(3)=X(2)∪BE=ABCDEG,因为X(3)=U,算法终止。   (CG)F2+=ABCDEG包含B,故CG→B是冗余的函数依赖,从F2中去掉。   C.设CG→D为冗余的函数依赖,则去掉CG→D,得:F3={AB→C,D→E,D→G,C→A,BE→C,BC→D,ACD→B,CE→A,CE→G}   计算(CG)F3+:设X(0)=CG   计算X(1):扫描F3中的各个函数依赖,找到左部为CG或CG子函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CGA=ACG。   计算X(2):扫描F3中的各个函数依赖,找到左部为ACG或ACG子函数依赖,因为找不到这样的函数依赖。故有X(2)=X(1),算法终止。(CG)F3+=ACG。   (CG)F3+=ACG不包含D,故CG→D不是冗余的函数依赖,不能从F3中去掉。   D.设CE→A为冗余的函数依赖,则去掉CE→A,得:F4={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→G}   计算(CG)F4+:设X(0)=CE   计算X(1):扫描F4中的各个函数依赖,找到左部为CE或CE子函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CEA=ACE。   计算X(2):扫描F4中的各个函数依赖,找到左部为ACE或ACE子函数依赖,得到一个CE→G函数依赖。故有X(2)=X(1)∪G=ACEG。   计算X(3):扫描F4中的各个函数依赖,找到左部为ACEG或ACEG子函数依赖,得到一个CG→D函数依赖。故有X(3)=X(2)∪D=ACDEG。   计算X(4):扫描F4中的各个函数依赖,找到左部为ACDEG或ACDEG子函数依赖,得到一个ACD→B函数依赖。故有X(4)=X(3)∪B=ABCDEG。因为X(4)=U,算法终止。 (CE)F4+=ABCDEG包含A,故CE→A是冗余的函数依赖,从F4中去掉。 得到F4={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→G}   ③ 去掉F4中各函数依赖左边多余的属性(只检查左部不是单个属性的函数依赖)由于C→A,函数依赖ACD→B中的属性A是多余的,去掉A得CD→B。 例如XY→A,若要判Y为多余的,则以X→A代替XY→A是否等价?若A属于(X)+,则Y是多余属性,可以去掉。   故最小函数依赖为:F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,CD→B,CE→G}
最小函数依赖求法是在关系数据库中,用来确定关系模式中属性之间的依赖关系的一种方法。其中,x表示属性合,在这个问题中没有具体的属性合名称,因此无法确定x代表的含义。 在最小函数依赖求法中,可以通过以下步骤来确定函数依赖关系: 1. 确定候选键:找出能唯一标识关系模式中元组的属性或属性合,这些属性或属性合被称为候选键。 2. 找出函数依赖:通过观察关系模式中属性之间的关系,确定属性之间的函数依赖关系。函数依赖是指在一个关系中,一个或多个属性的值决定了另一个或多个属性的值。 3. 实施最小化:对于找出的函数依赖关系,经过最小化处理,得到最小函数依赖最小化是指通过删除冗余的依赖关系来简化函数依赖。例如,如果A→B已经存在,并且还有A→C和C→B,那么A→B就可以被删除,因为通过A→C和C→B已经可以推出A→B了。 4. 检查传递依赖:对于最小化的函数依赖,检查是否存在传递依赖。传递依赖是指如果A→B,B→C,则A→C。如果存在传递依赖,可以进一步最小函数依赖。 通过以上步骤,可以确定关系模式中属性之间的函数依赖关系,并得到最小化的函数依赖。这些函数依赖关系在数据库设计和规范化过程中很有用,可以用来避免数据冗余和提高数据的一致性和完整性。
评论 72
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值