最小生成树的问题之prim算法与kruskal算法

最小生成树的问题,可以用kruskal算法和prim算法去解决问题。

prim算法

算法参考:最小生成树Prim算法理解

##代码

#include <iostream>

const int MAXN = 550;
const int MAX_INT = 2147483647;

using namespace std;

int prim(int map[MAXN][MAXN], int N) {
    int lowCost[MAXN], startOfLowCost[MAXN];
    int longestRoad = 0;
    lowCost[0] = 0;
    //  lowCost[i] = 0 and startOfLowcost = 0 means vertex i is a root of the mst
    //  init
    for (int i = 1; i < N; i++) {
        lowCost[i] = map[0][i];
        startOfLowCost[i] = 0;
    }
    
    for (int i = 1; i < N; i++) {
        int min = MAX_INT;
        int minid = 0;
        //  find the min road;
        for (int j = 1; j < N; j++) {
            if (lowCost[j] != 0 && lowCost[j] < min) {
                min = lowCost[j];
                minid = j;
            }
        }
        if (min > longestRoad) longestRoad = min;
        lowCost[minid] = 0; //  became root
        for (int j = 1; j < N; j++) {
            if (map[minid][j] < lowCost[j]) {
                lowCost[j] = map[minid][j];
                startOfLowCost[j] = minid;
            }
        }
        
    }
    return longestRoad;
}

int main(int argc, const char * argv[]) {
    int T, N;
    cin >> T;
    int map[550][550];
    while (T--) {
        cin >> N;
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                cin >> map[i][j];
            }
        }
        cout << prim(map, N) << endl;
        if (T) cout << endl;
    }
}

kruskal算法

参考文章:Prim算法和Kruskal算法

其实个人觉得kruskal算法比prim算法实现起来更简单
kruskal算法的基本思路就是
1、将所有边加入到一个存放边的容器中(代码中因为图是无向图,所以我们只把上三角加入即可)
2、按从小到大给边排序
3、初始化所有边,另所有边各属于不同的集合
4、每次取一条边,若这边连接的两个顶点不相同且属于不同的集合,则把这连个顶点放到同一个集合中,getfFather函数带点并查集的思想。重复直到所有边属于同一集合即可,最坏情况执行 总边数 次。

//
//  main.cpp
//  Highways
//
//  Created by 邱兆丰 on 17/12/2016.
//  Copyright © 2016 菇生. All rights reserved.
//

#include <iostream>
#include <memory.h>
#include <algorithm>

const int MAXN = 550;
const int MAX_INT = 2147483647 / 2;
const int MAX_EDGE = 130000;

using namespace std;

typedef struct node
{
    int u;                                                 //边的起始顶点
    int v;                                                 //边的终止顶点
    int w;                                                 //边的权值
}Edge;

bool compare(Edge a, Edge b) {
    return a.w < b.w;
}

int getFather(int x, int* vertexSet) {
    return vertexSet[x] == x ? x : vertexSet[x] = getFather(vertexSet[x], vertexSet);
}

int kruskal(int map[MAXN][MAXN], int N) {
    int longestRoad = 0;
    int vertexSet[MAXN];   //  顶点属于的集合
    Edge E[MAX_EDGE];           //存放所有的边
    
    for (int i = 0; i < N; i++) {   //一开始各属各集,n个顶点有n个集合
        vertexSet[i] = i;
    }
    
    int vertexNum = 0;
    for (int i = 0; i < N - 1; i++) {
        for (int j = i + 1; j < N; j++) {
            if (map[i][j] != 0 && map[i][j] != MAX_INT) {
                E[vertexNum].u = i;
                E[vertexNum].v = j;
                E[vertexNum++].w = map[i][j];
            }
        }
    }
    
    sort(E, E + vertexNum, compare);
    
    for (int i = 0; i < vertexNum; i++) {
        int set1 = getFather(E[i].u, vertexSet);
        int set2 = getFather(E[i].v, vertexSet);
        if (set1 != set2) {
            if (E[i].w > longestRoad) longestRoad = E[i].w;
            vertexSet[set1] = set2;
        }
    }
    
    return longestRoad;
}

int main(int argc, const char * argv[]) {
    int T, N;
    cin >> T;
    int map[550][550];
    while (T--) {
        cin >> N;
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                cin >> map[i][j];
            }
        }
        cout << kruskal(map, N) << endl;
        if (T) cout << endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值