最小生成树的问题,可以用kruskal算法和prim算法去解决问题。
prim算法
算法参考:最小生成树Prim算法理解
##代码
#include <iostream>
const int MAXN = 550;
const int MAX_INT = 2147483647;
using namespace std;
int prim(int map[MAXN][MAXN], int N) {
int lowCost[MAXN], startOfLowCost[MAXN];
int longestRoad = 0;
lowCost[0] = 0;
// lowCost[i] = 0 and startOfLowcost = 0 means vertex i is a root of the mst
// init
for (int i = 1; i < N; i++) {
lowCost[i] = map[0][i];
startOfLowCost[i] = 0;
}
for (int i = 1; i < N; i++) {
int min = MAX_INT;
int minid = 0;
// find the min road;
for (int j = 1; j < N; j++) {
if (lowCost[j] != 0 && lowCost[j] < min) {
min = lowCost[j];
minid = j;
}
}
if (min > longestRoad) longestRoad = min;
lowCost[minid] = 0; // became root
for (int j = 1; j < N; j++) {
if (map[minid][j] < lowCost[j]) {
lowCost[j] = map[minid][j];
startOfLowCost[j] = minid;
}
}
}
return longestRoad;
}
int main(int argc, const char * argv[]) {
int T, N;
cin >> T;
int map[550][550];
while (T--) {
cin >> N;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
cin >> map[i][j];
}
}
cout << prim(map, N) << endl;
if (T) cout << endl;
}
}
kruskal算法
参考文章:Prim算法和Kruskal算法
其实个人觉得kruskal算法比prim算法实现起来更简单
kruskal算法的基本思路就是
1、将所有边加入到一个存放边的容器中(代码中因为图是无向图,所以我们只把上三角加入即可)
2、按从小到大给边排序
3、初始化所有边,另所有边各属于不同的集合
4、每次取一条边,若这边连接的两个顶点不相同且属于不同的集合,则把这连个顶点放到同一个集合中,getfFather函数带点并查集的思想。重复直到所有边属于同一集合即可,最坏情况执行 总边数 次。
//
// main.cpp
// Highways
//
// Created by 邱兆丰 on 17/12/2016.
// Copyright © 2016 菇生. All rights reserved.
//
#include <iostream>
#include <memory.h>
#include <algorithm>
const int MAXN = 550;
const int MAX_INT = 2147483647 / 2;
const int MAX_EDGE = 130000;
using namespace std;
typedef struct node
{
int u; //边的起始顶点
int v; //边的终止顶点
int w; //边的权值
}Edge;
bool compare(Edge a, Edge b) {
return a.w < b.w;
}
int getFather(int x, int* vertexSet) {
return vertexSet[x] == x ? x : vertexSet[x] = getFather(vertexSet[x], vertexSet);
}
int kruskal(int map[MAXN][MAXN], int N) {
int longestRoad = 0;
int vertexSet[MAXN]; // 顶点属于的集合
Edge E[MAX_EDGE]; //存放所有的边
for (int i = 0; i < N; i++) { //一开始各属各集,n个顶点有n个集合
vertexSet[i] = i;
}
int vertexNum = 0;
for (int i = 0; i < N - 1; i++) {
for (int j = i + 1; j < N; j++) {
if (map[i][j] != 0 && map[i][j] != MAX_INT) {
E[vertexNum].u = i;
E[vertexNum].v = j;
E[vertexNum++].w = map[i][j];
}
}
}
sort(E, E + vertexNum, compare);
for (int i = 0; i < vertexNum; i++) {
int set1 = getFather(E[i].u, vertexSet);
int set2 = getFather(E[i].v, vertexSet);
if (set1 != set2) {
if (E[i].w > longestRoad) longestRoad = E[i].w;
vertexSet[set1] = set2;
}
}
return longestRoad;
}
int main(int argc, const char * argv[]) {
int T, N;
cin >> T;
int map[550][550];
while (T--) {
cin >> N;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
cin >> map[i][j];
}
}
cout << kruskal(map, N) << endl;
if (T) cout << endl;
}
}