pytorch 学习 简单resnet殘差网络

19 篇文章 0 订阅

代码源自:https://github.com/yunjey/pytorch-tutorial
这里只是将其做为一个学习样例,具体代码见:02-intermediate/deep_residual_network

1.看下面的网络结构:

#3x3 convolution 
def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
                     stride=stride, padding=1, bias=False)
#上面的3*3的conv转为2dconv,当 stride为1时,shape不变,stride为2时,shape减半

# Residual block 残差网络部分
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample
        
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

# ResNet 网络
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=10):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = conv3x3(3, 16)
        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self.make_layer(block, 16, layers[0])
        self.layer2 = self.make_layer(block, 32, layers[1], 2)
        self.layer3 = self.make_layer(block, 64, layers[2], 2)
        self.avg_pool = nn.AvgPool2d(8)
        self.fc = nn.Linear(64, num_classes)
     #重点是这   当 stride不为1或者输入与输出的通道数不相等时,定义了一个downsample,在layers的"后
     #面",其实是并行的.我们后面来解答
    def make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = nn.Sequential(
                conv3x3(self.in_channels, out_channels, stride=stride),
                nn.BatchNorm2d(out_channels))
        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return nn.Sequential(*layers)
    
    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        print("in",out.shape)
        out = self.layer1(out)
        print("layer1",out.shape)
        out = self.layer2(out)
        print("layer2",out.shape)
        out = self.layer3(out)
        print("layer3",out.shape)
        out = self.avg_pool(out)
        print(out.shape)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out
    
model = ResNet(ResidualBlock, [2, 2, 2]).to(device)
print(model)

2.上面的网络结构也比较简单,我们打印一下model:所有定义的层都在这了,conv,bn,relu,layer1,layer2,layer3,avg_pool,最后是一个fc全链接层就完了.

ResNet(
  (conv): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace)
  (layer1): Sequential(
    (0): ResidualBlock(
      (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): ResidualBlock(
      (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): ResidualBlock(
      (conv1): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResidualBlock(
      (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): ResidualBlock(
      (conv1): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResidualBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avg_pool): AvgPool2d(kernel_size=8, stride=8, padding=0)
  (fc): Linear(in_features=64, out_features=10, bias=True)
)

我们再看一下打印的各层shape:

in torch.Size([100, 16, 32, 32])
layer1 torch.Size([100, 16, 32, 32])
layer2 torch.Size([100, 32, 16, 16])
layer3 torch.Size([100, 64, 8, 8])
torch.Size([100, 64, 1, 1])

按照conv层的定义,我们计算一下shape,对于输入与layer1(32,32)肯定没问题,但到layer2时,若再按照顺序执行,我们来看第0层,当经过conv1时会变成(16,16),再经过 downsample中的 (0)层时,又会减一半,变为(8,8),怎么与打印出来的(16,16)不一致呢?

3.这时我们利用 torchviz 工具打印一下就知道了,具体代码如下:

from torchviz import make_dot, make_dot_from_trace
x = torch.randn(100, 3, 32, 32).requires_grad_(True)
y = model(x)
make_dot(y, params=dict(list(model.named_parameters()) + [('x', x)]))

在这里插入图片描述
我们找到这一层的相应结点图,我们看到,其实 downsample中的层与主网络层是并行运行的,而后通过AddBackward合并到一起.这就能解释shape不一致的情况了,同理layer3也只降为(8,8),就能解释了.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
是的,我可以使用PyTorch框架来实现ResNet网络并进行MNIST数字识别。ResNet是一种深度残差网络结构,特别适用于图像分类任务。MNIST是一个经典的手写数字数据集,常用于测试和验证机器学习模型。 我可以为您提供一个示例代码来实现这个任务。以下是一个简单的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision.datasets import MNIST from torchvision.transforms import ToTensor from torch.utils.data import DataLoader # 定义ResNet模型 class ResNet(nn.Module): def __init__(self): super(ResNet, self).__init__() # 定义网络结构... def forward(self, x): # 定义前向传播... # 加载MNIST数据集 train_dataset = MNIST(root='.', train=True, transform=ToTensor(), download=True) test_dataset = MNIST(root='.', train=False, transform=ToTensor()) # 创建数据加载器 train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) # 创建ResNet模型实例 model = ResNet() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for images, labels in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 在测试集上评估模型 with torch.no_grad(): total_correct = 0 total_samples = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total_samples += labels.size(0) total_correct += (predicted == labels).sum().item() accuracy = total_correct / total_samples print(f'Epoch {epoch+1}, Accuracy: {accuracy}') # 使用训练好的模型进行预测 # ... ``` 请注意,此示例仅提供了一个基本的框架,您可能需要根据实际情况进行适当的修改和调整。希望对您有所帮助!***

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值