我们正处在大数据时代,浅谈大数据

大数据是指短时间内产生的大量、多类型、价值密度低但处理速度快的数据。Hadoop作为一个分布式系统,解决了大数据的存储和处理问题,具有高容错性、高扩展性和高效性。Hadoop的核心包括HDFS和MapReduce,它能处理PB级别的数据,广泛应用于各大公司,如Yahoo、Facebook和百度。Hadoop的发展现状表明,它已成为大数据处理领域的重要工具,未来潜力巨大。
摘要由CSDN通过智能技术生成

大数据简单来说就是短时间快速的产生大量的多种多样的有价值的数据,但是这些数据的价值密度不是很高。

在这里插入图片描述
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。
正如《纽约时报》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。
哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。

一、大数据有四大特征

数据量大(Volume)
第一个特征是数据量大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。

类型繁多(Variety)
第二个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。

价值密度低(Value)
第三个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。

速度快、时效高(Velocity)
第四个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。

既有的技术架构和路线,已经无法高效处理如此海量的数据,而对于相关组织来说,如果投入巨大采集的信息无法通过及时处理反馈有效信息,那将是得不偿失的。可以说,大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。

当数据的处理技术发生翻天覆地的变化时,大数据时代,我们的思维也要变革。

  1. 第一个思维变革:利用所有的数据,而不再仅仅依靠部分数据,即不是随机样本,而是全体数据。
  2. 第二个思维变革:我们唯有接受不精确性,才有机会打开一扇新的世界之窗,即不是精确性,而是混杂性。
  3. 第三个思维变革:不是所有的事情都必须知道现象背后的原因,而是要让数据自己“发声”,即不是因果关系,而是相关关系。

二、那么这么大的数据量,就关乎到了关键的问题。那就是如何进行存储!要知道在当今社会中瞬间产生的数据量是可以达到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值