算术表达式,即由数字和运算符组成的算式,如(1+2)*(3-5)
一个算术表达式通常可以表示成一个二叉树,如上述式子转化成二叉树就是:
在这之前,先讲讲一个算术表达式是如何求解的。
对于一个如上所示的算术表达式,如果让人来计算的话,是很简单的,可是让计算机来计算这样的算术表达式就有点难了,上述式子被称做为”中序表达式“,即运算符在操作数的中间,计算机难以计算这样的算式是因为计算机的内存模型多用栈,或者说计算机只能顺序操作,这样就无法很好处理运算符的优先级问题。所以要把中序表达式转化成计算机容易理解的形式---即后缀表达式(又称逆波兰式)。
顾名思义,后缀表达式就是运算符在后,操作数在前的式子。(1+2)*(3-5)的后缀表达式就是12+35-*
可以发现表达式中没有括号了,也就是说计算机处理这个表达式的时候就不需要考虑优先级的问题了。
如何将一个中序表达式转化成后缀表达式呢?
1、首先准备一个栈opStack用于存储运算符,一个队列reversePolish用于存储逆波兰式
2、从左向右开始读取算术表达式的元素X,分以下情况进行不同的处理:
(1)如果X是操作数,直接入队(reversePolish)
(2)如果X是运算符:再分以下情况:
1)如果栈为空,直接入栈。
2)如果X==”(“,直接入栈。
3)如果X&#