【算法题集锦之四】--算术表达式转二叉树并还原

本文介绍了如何将算术表达式转化为二叉树,首先讲解了中序表达式转后缀表达式(逆波兰式)的过程,包括使用栈和队列的操作,接着详细阐述了后缀表达式的计算方法,最后讨论了通过改变计算步骤将逆波兰式转换为二叉树的实现方式。
摘要由CSDN通过智能技术生成

算术表达式,即由数字和运算符组成的算式,如(1+2)*(3-5)

一个算术表达式通常可以表示成一个二叉树,如上述式子转化成二叉树就是:


在这之前,先讲讲一个算术表达式是如何求解的。

对于一个如上所示的算术表达式,如果让人来计算的话,是很简单的,可是让计算机来计算这样的算术表达式就有点难了,上述式子被称做为”中序表达式“,即运算符在操作数的中间,计算机难以计算这样的算式是因为计算机的内存模型多用栈,或者说计算机只能顺序操作,这样就无法很好处理运算符的优先级问题。所以要把中序表达式转化成计算机容易理解的形式---即后缀表达式(又称逆波兰式)。

顾名思义,后缀表达式就是运算符在后,操作数在前的式子。(1+2)*(3-5)的后缀表达式就是12+35-*

可以发现表达式中没有括号了,也就是说计算机处理这个表达式的时候就不需要考虑优先级的问题了。

如何将一个中序表达式转化成后缀表达式呢?

1、首先准备一个栈opStack用于存储运算符,一个队列reversePolish用于存储逆波兰式

2、从左向右开始读取算术表达式的元素X,分以下情况进行不同的处理:

(1)如果X是操作数,直接入队(reversePolish)

(2)如果X是运算符:再分以下情况:

1)如果栈为空,直接入栈。

2)如果X==”(“,直接入栈。

3)如果X&#

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值