一、什么是算法和数据结构
1、算法
合理的算法可以使我们合理运用空间,提高计算的效率,达到事半功倍的效果,算法的学习对于每个程序员来说是必不可少的。
衡量算法好坏的标准:时间复杂度、空间复杂度。
算法的一些简单应用实例
计算
排序
查询
最优决策— 如找到最短路径
2、数据结构
是算法的基石,是数据的组织和存储格式,帮助我们更高效的管理、存储数据。
典型数据结构
线性数据结构—数组、链表
二叉树
图(反映多对多的关系)
二、时间复杂度
运行某一程序所花费的时间长短,同一个算法,在不同的操作次数下,时间复杂度也不同。
T(n) = O(f(n))
常见的时间复杂度
- 常量
表示为O(1) - 线性
表示为O(n) - 对数
表示为O(logN)
表示为O(N^2)
三、空间复杂度
运行某一程序所占用的内存空间大小。 S(n) = O(f(n))
常见的空间复杂度
- 常量空间
同一数据类型的数据所占用的空间大小是一定的,表示为O(1) - 线性空间
例如一维数组占用的空间,表示为O(n) - 二维空间
例如二维数组占用的空间,表示为O(N^2) - 递归
递归的复杂度与递归的深度成正比,表示为O(n).
总结:在通常情况下,人们看重花费时间的长短,时间复杂度比空间复杂度更为重要。