bzoj4574: [Zjoi2016]线段树

18 篇文章 0 订阅
9 篇文章 0 订阅

好久没写题解了。。。

这道题拖了好久,终于把常数卡进去了。

首先发现数据随机,肯定不是正常算法,不妨离散。

考虑DP,用dp[q][i][j]k]表示q轮后i~j最后变成k的情况。比较难转移。

参考大神的blog:

用dp[q][i][j][k]表示表示q轮后i~j最后变成每个数都小于等于k的情况,这样可以转移。//不要问我怎么转,好久以前推得式子

然后每个值k只影响一段i~j的dp值,满足max(i~j)=k,这个可以计算证明期望条件下并不到O(n),于是就暴力地DP啦

bzoj比uoj慢好多啊,少膜一点才过。听lych说可以改循环顺序,然而懒。。。

#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
#define P 1000000007
using namespace std;
int n,q,a[405],b[405],f[405][405],y[405],l,r,G[405];
ll dp[2][405][405],g[405][405],t;
bool cmp(const int &x,const int &y){return a[x]<a[y];}
void solve(int l,int r,int p)
{
	int i,j,k;
	for (i=l-1;i<=r+1;i++)
		for (j=l-1;j<=r+1;j++)
			dp[0][i][j]=dp[1][i][j]=0;
	int now=0,pre=1;
	dp[now][l][r]=1;
	for (k=1;k<=q;k++)
	{
		now^=1;pre^=1;
		for (i=l;i<=r;i++)
		{
			t=0;
			for (j=r;j>=i;j--)
				dp[now][i][j]=t%P,t=t+dp[pre][i][j]*(n-j);
		}
		for (j=l;j<=r;j++)
		{
			t=0;
			for (i=l;i<=j;i++)
				dp[now][i][j]=(dp[now][i][j]+t+dp[pre][i][j]*f[i][j])%P,t=t+dp[pre][i][j]*(i-1);
		}
		
	}
	for (i=l;i<=r;i++)
	{
		t=0;
		for (j=r;j>=i;j--)
			t=t+dp[now][i][j],g[j][y[p]]=(g[j][y[p]]+t)%P;
	}
}

int main()
{
	scanf("%d%d",&n,&q);
	int i,j;
	for (i=1;i<=n;i++)
		scanf("%d",&a[i]),b[i]=i;
	sort(b+1,b+n+1,cmp);
	for (i=1;i<=n;i++) y[b[i]]=i,G[i]=i*(i+1)/2;
	for (i=1;i<=n;i++)
		for (j=i;j<=n;j++)
			f[i][j]=G[i-1]+G[j-i+1]+G[n-j];
	for (i=1;i<=n;i++)
	{
		l=i,r=i;
		while(l!=1&&a[l-1]<=a[i])l--;
		while(r!=n&&a[r+1]<=a[i])r++;
		solve(l,r,i);
	}
	for (i=1;i<=n;i++)
	{
		t=0;
		for (j=1;j<=n;j++)
		{
			if (g[i][j]==0){g[i][j]=g[i][j-1];continue;}
			t+=(g[i][j]-g[i][j-1])*a[b[j]];
		}
		printf(i!=n?"%lld ":"%lld\n",(t%P+P)%P);
	}
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值