杜教筛是什么?赶紧写一题。
令S(n,m)=∑i=1mφ(ni)对于|μ(n)|=1S(n,m)=∑i=1mφ(i)∑e|dφ(de)φ(nd)−−−d=(i,n)S(n,m)=∑i=1mφ(i)∑d|(i,n)φ(nd)=∑d|nφ(nd)∑i=1m/dφ(di)S(n,m)=∑d|nφ(nd)S(d,md)对于μ(n)=0,设k|n,|μ(n/k)|=1,k最大S(n,m)=∑i=1mkφ(nik)=kS(nk,m)S(1,m)=∑imφ(i)
于是就可以用杜教筛求S(1,m),记搜求出S(n,m), Ans=∑ni=1S(i,m) 。
反正大概就是这样,复杂度不会算。。。
附题解 1 2
#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#define M 4000005
#define P 1000000007
#define ll long long
using namespace std;
int n,m,q[M],phi[M],pr[M],cnt,Sum[M],_Sum[M],fl[M];
ll Ans;
map<ll,int>Map;
int Get(int n)
{
if (n<M) return Sum[n];
if (_Sum[m/n]!=-1) return _Sum[m/n];
ll ans=(ll)n*(n+1)/2%P;
for (int i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ans=ans-(ll)(j-i+1)*Get(n/i)%P;
}
return _Sum[m/n]=(ans%P+P)%P;
}
int S(int n,int m)
{
if (!m) return 0;
if (Map[(ll)n*P+m]) return Map[(ll)n*P+m];
if (n==1) return Get(m);
ll ans=0;
for (int i=1;i*i<=n;i++)
if (n%i==0)
{
ans+=(ll)phi[n/i]*S(i,m/i)%P;
if (i*i!=n) ans+=(ll)phi[i]*S(n/i,m/(n/i))%P;
}
return Map[(ll)n*P+m]=ans%P;
}
int main()
{
scanf("%d%d",&n,&m);
memset(_Sum,-1,sizeof _Sum);
q[1]=1;phi[1]=1;Sum[1]=1;
for (int i=2;i<M;i++)
{
if (!fl[i]) q[i]=1,phi[i]=i-1,pr[++cnt]=i;
Sum[i]=(Sum[i-1]+phi[i])%P;
for (int j=1,t;j<=cnt&&i*pr[j]<M;j++)
{
fl[t=i*pr[j]]=1;
if (i%pr[j]==0)
{
q[t]=q[i]*pr[j];
phi[t]=phi[i]*pr[j];
break;
}
q[t]=q[i];
phi[t]=phi[i]*phi[pr[j]];
}
}
for (int i=1;i<=n;i++)
Ans+=(ll)q[i]*S(i/q[i],m)%P;
printf("%lld\n",Ans%P);
}