给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的连续子数组,并返回其长度。如果不存在符合条件的连续子数组,返回 0。
示例:
输入: s = 7, nums = [2,3,1,2,4,3]
输出: 2
解释: 子数组 [4,3] 是该条件下的长度最小的连续子数组。
进阶:
如果你已经完成了O(n) 时间复杂度的解法, 请尝试 O(n log n) 时间复杂度的解法。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-size-subarray-sum
只想到了俩种解法:
一.暴力法:
两个指针 i 和 j ,俩个循环嵌套就是了
i 从0到nums.length-1
j 从i+1到nums.length
时间复杂度O(n2)
很慢,不推荐
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int min = Integer.MAX_VALUE;
int i = 0,sub = 0; //
while(i <nums.length-1) {
int sum = 0;
for(int j = i; j <nums.length; j ++) {
if(nums[j]>=s)
return 1;
sum = sum + nums[j];
sub = j - i;
if(sum>=s&&min>sub) {
min = sub;
}
}
i++;
}
if(min != Integer.MAX_VALUE)
return min+1;
else
return 0;
}
}
运行情况如下:
在方法一的基础上优化一下
因为数组 nums[ ] 中全是正整数,所以只要子数组的长度增加,总和也一定最大。
①将 nums[ ] 看作一个队列,向队首其中加入元素,当元素总和大于目标数s时,记录元素个数与之前的元素个数比较。
②将队尾的元素踢出队列,当元素总和 < s 时,未达到数字末尾,则回到第一步。
代码如下:
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int min = Integer.MAX_VALUE;
int i = 0,sum = 0,j = 0;
while(j<nums.length) {
sum+=nums[j++];
while(sum>=s) {
min = Math.min(min, j-i);
sum -= nums[i++];
}
}
return min== Integer.MAX_VALUE?0:min;
}
}