# POJ - 2989 All Friends 极大团

 Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %lld & %llu

Description

Sociologists are interested in the phenomenon of "friendship". To study this property, they analyze various groups of people. For each two persons in such a group they determine whether they are friends (it is assumed that this relation is symmetric). The sociologists are mostly interested in the sets of friends. The set S of people is the set of friends if every two persons in S are friends. However, studying the sets of friends turns out to be quite complicated, since there are too many such sets. Therefore, they concentrate just on the maximal sets of friends. A set of friends S is maximal if every person that does not belong to S is not a friend with someone in S.

Your task is to determine the number of maximal sets of friends in each group. In case this number exceeds 1 000, you just need to report this -- such a group is too complicated to study.

Input

The input consists of several instances, separated by single empty lines.

The first line of each instance consists of two integers 1 ≤ n ≤ 128 and m -- number of persons in the group and number of friendship relations. Each of m following lines consists of two integers ai and bi (1 ≤ ai, bi ≤ n). This means that persons ai and bi (ai ≠ bi) are friends. Each such relationship is described at most once.

Output

The output for each instance consists of a single line containing the number of maximal sets of friends in the described group, or string "Too many maximal sets of friends." in case this number is greater than 1 000.

Sample Input

5 4
1 2
3 4
2 3
4 5

Sample Output

4

    BronKerbosch(All, Some, None):
if Some and None are both empty:
report All as a maximal clique //所有点已选完，且没有不能选的点,累加答案
for each vertex v in Some: //枚举Some中的每一个元素
BronKerbosch1(All ⋃ {v}, Some ⋂ N(v), None ⋂ N(v))
//将v加入All，显然只有与v为朋友的人才能作为备选，None中也只有与v为朋友的才会对接下来造成影响
Some := Some - {v} //已经搜过，在Some中删除，加入None
None := None ⋃ {v}  

void dfs(int d, int an, int sn, int nn){
if(!sn && !nn) S++;//已经搜到了，与所选点全部有连接的点以全部放入all中

int u = some[d][1];
For(i, 1, sn){
int v = some[d][i];
if(G[u][v]) continue;//优化，只要取与当前已经搜过的点没有连接的点就可以了，因为它们肯定已经被处理过了
int tsn = 0, tnn = 0;

For(j, 1, an) all[d+1][j] = all[d][j];
all[d+1][an+1] = v; //将点v放入all中

For(j, 1, sn)
if(G[v][some[d][j]]) some[d+1][++tsn] = some[d][j];
For(j, 1, nn)
if(G[v][none[d][j]]) none[d+1][++tnn] = none[d][j];

dfs(d+1, an+1, tsn, tnn);

some[d][i] = 0; none[d][++nn] = v; //从some中取出v，放入none（判重）
}
}

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>

using namespace std;

#define MAXN (150+5)
#define INF 0x3f3f3f3f
#define Set(a, v) memset(a, v, sizeof(a))
#define For(i, a, b) for(int i = (a); i <= (int)(b); i++)

bool G[MAXN][MAXN];
int n, m, S, all[MAXN][MAXN], some[MAXN][MAXN], none[MAXN][MAXN];

void init(){
Set(G, 0);
}

void dfs(int d, int an, int sn, int nn){
if(!sn && !nn) S++;
if(S > 1000) return;

int u = some[d][1];
For(i, 1, sn){
int v = some[d][i];
if(G[u][v]) continue;
int tsn = 0, tnn = 0;

For(j, 1, an) all[d+1][j] = all[d][j];
all[d+1][an+1] = v;

For(j, 1, sn)
if(G[v][some[d][j]]) some[d+1][++tsn] = some[d][j];
For(j, 1, nn)
if(G[v][none[d][j]]) none[d+1][++tnn] = none[d][j];

dfs(d+1, an+1, tsn, tnn);

some[d][i] = 0; none[d][++nn] = v;
}
}

int main(){
freopen("test.in", "r", stdin);
freopen("test.out", "w", stdout);

while(scanf("%d%d", &n, &m) != EOF){
init();

For(i, 1, m){
int u, v;
scanf("%d%d", &u, &v);
G[u][v] = G[v][u] = true;
}
For(i, 1, n) some[0][i] = i;

S = 0;
dfs(0, 0, n, 0);
if(S <= 1000) printf("%d\n", S);
else printf("Too many maximal sets of friends.\n");
}

return 0;
}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120