参考链接:http://blog.csdn.net/morewindows/article/details/6709644
辅助函数:Swap和Print
code:
void Swap(int &a,int &b)
{
int temp = a ;
a = b;
b = temp;
}
void Print(int *a,int n)
{
for(int i = 0 ; i< n ; ++i)
cout<<a[i]<<" ";
cout<<endl;
}
以小根堆为例
1.当有新节点加入时,如何保持堆性质:
思路:新节点会加入至堆的最后一个位置,为保持小根堆特性,应将新加入的节点上移至适当位置。
即将其不停与父节点比较,若其值小于父节点,则将其与父节点交换位置,直到当其值大于父节点时,小根堆性质得到保持,停止上升操作
code:
void MinHeapFixUp(int *a,int i)
{
for(int j = (i - 1)/2 ; (j>= 0)&&(i!=0)&&a[j]>a[i] ; i = j , j = (i - 1) / 2)
Swap(a[i],a[j]);
}
void MinHeapAddNum(int *a,int n,int nNum)
{
a[n] = nNum;
MinHeapFixUp(a,n);
}
2.当删除节点时,如何保持堆性质:
删除首节点,即将其与最后一个节点(a[n-1])互换位置,将节点数减一,对剩下n-1个节点重组
当最后一个节点被移至首节点时,为保持小根堆性质,应将其下沉至适当位置(即小于最小子节点的位置)。
code:
void MinHeapFixDown(int *a,int i,int n)
{
int j,temp;
j = 2 * i + 1;
temp = a[i];
while(j < n)
{
if(j + 1 < n && a[j] > a[j+1])
j++;
if(temp < a[j])
break;
a[i] = a[j];
i = j;
j = i * 2 + 1;
}
a[i] = temp;
}
void MinHeapDelNum(int *a,int n)
{
cout<<a[0]<<" ";
Swap(a[0],a[n-1]);
MinHeapFixDown(a,0,n-1);
}
3.堆排序:
将一组数组组建成大小为n的堆,执行n次循环:互换首尾节点位置,输出尾节点(MinHeapDelNum中实现),数组大小减一,将数组重组成堆
code:
void HeapSort(int *a,int n,int *p)
{
for(int i = 0 ; i < n ; ++i)
MinHeapAddNum(a,i,p[i]);
Print(a,5);
for(int i = n ; i >= 1 ; --i)
MinHeapDelNum(a,i);
}
main函数:
int main()
{
int a[5] = {0};
int p[5]= {4,3,1,8,5};
HeapSort(a,5,p);
return 0;
}