目录
一、引言
1.1 研究背景与目的
结节性甲状腺肿是一种常见的甲状腺疾病,其发病率在全球范围内呈上升趋势。据统计,在一般人群中,通过触诊发现的甲状腺结节患病率约为 4% - 7%,而借助高分辨率超声检查,这一比例可高达 20% - 76% ,其中结节性甲状腺肿占据了相当大的比例。结节性甲状腺肿的病因复杂,涉及碘缺乏、碘过量、遗传因素、自身免疫以及环境因素等多个方面。例如,在一些碘缺乏地区,由于机体为满足甲状腺激素合成的需求,会代偿性地促使甲状腺增生、肿大,进而形成结节性甲状腺肿;而在碘过量地区,也有研究表明过量的碘摄入可能干扰甲状腺激素的合成与代谢,增加结节性甲状腺肿的发病风险。
目前,对于结节性甲状腺肿的诊断主要依赖于临床症状、体格检查、超声检查、细针穿刺活检以及实验室检查等手段。然而,这些传统诊断方法存在一定的局限性。超声检查虽然是常用的筛查手段,但其诊断结果受检查者经验和结节特征等因素影响较大,对于一些微小或不典型结节的诊断准确性有待提高;细针穿刺活检虽然能够提供较为准确的病理诊断,但属于有创检查,可能会给患者带来一定的痛苦和并发症风险,且存在一定的假阴性和假阳性率。在治疗方面,手术是主要的治疗方式,但手术方案的选择缺乏精准的指导,容易导致过度治疗或治疗不足的情况。例如,对于一些良性结节,若切除范围过大,可能会影响甲状腺功能,导致患者术后需要长期服用甲状腺激素替代治疗;而对于存在恶变风险的结节,若切除不彻底,则可能导致疾病复发和转移。
随着人工智能技术的飞速发展,大模型在医疗领域的应用逐渐受到关注。大模型具有强大的数据处理和分析能力,能够对海量的医疗数据进行学习和挖掘,从而发现疾病的潜在规律和特征。在结节性甲状腺肿的诊疗中,引入大模型可以整合多源数据,包括患者的病史、症状、体征、影像检查结果、实验室检查数据以及基因信息等,实现对疾病的精准预测和诊断。通过对大量病例数据的学习,大模型能够识别出与结节性甲状腺肿恶变、并发症发生相关的关键因素,为临床医生制定个性化的手术方案、麻醉方案以及术后护理计划提供科学依据,提高诊疗的准确性和安全性。本研究旨在利用大模型对结节性甲状腺肿进行术前、术中、术后的全面预测,包括恶变风险、并发症风险等,并基于预测结果制定精准的手术方案、麻醉方案、术后护理计划,同时开展统计分析和健康教育与指导,以提高结节性甲状腺肿的诊疗水平,改善患者的预后。
1.2 研究意义
本研究利用大模型对结节性甲状腺肿进行预测和相关方案制定,具有重要的理论和实践意义。从理论层面来看,深入探究大模型在结节性甲状腺肿诊疗中的应用,有助于揭示疾病的发病机制和发展规律。通过对多源数据的深度分析,大模型能够挖掘出传统研究方法难以发现的潜在因素和关联,为结节性甲状腺肿的病因学、病理学研究提供新的视角和思路,丰富和完善甲状腺疾病的理论体系。
在实践应用方面,大模型的应用能够显著提升结节性甲状腺肿的诊疗水平。在术前,通过精准的恶变风险和并发症风险预测,医生可以更准确地评估患者病情,为患者提供更合理的治疗建议。对于恶变风险低、并发症风险小的患者,可以避免不必要的手术,采用定期观察或保守治疗,减少患者的痛苦和医疗费用;而对于恶变风险高的患者,则可以及时制定手术方案,提高手术的成功率和患者的生存率。在术中,依据大模型提供的预测结果,医生能够优化手术方案,确定最佳的手术切除范围,在彻底切除病变组织的同时,最大程度地保留正常甲状腺组织,减少对甲状腺功能的影响;合理选择麻醉方式,确保手术的顺利进行,降低麻醉相关并发症的发生风险。术后,根据大模型的预测制定个性化的护理计划,能够更好地促进患者康复,减少术后并发症的发生,提高患者的生活质量。
大模型的应用还可以有效降低医疗成本。通过精准的预测和个性化的治疗方案制定,避免了过度治疗和不必要的检查,减少了医疗资源的浪费。同时,降低了并发症的发生率,缩短了患者的住院时间,减轻了患者和社会的经济负担,提高了医疗资源的利用效率,具有显著的社会效益和经济效益。
1.3 国内外研究现状
在国外,关于结节性甲状腺肿的研究起步较早,在病因、诊断和治疗等方面取得了一系列成果。在病因研究方面,国外学者对碘缺乏、碘过量、遗传因素、环境因素等进行了深入探讨,明确了这些因素在结节性甲状腺肿发病中的作用机制。例如,丹麦的研究发现,在碘轻度和中度缺乏地区,甲状腺结节的检出率较高,且碘中度缺乏地区的结节更大、更易被触摸到 。在诊断技术上,国外已经广泛应用高分辨率超声、细针穿刺活检等方法,并不断探索新的诊断技术和指标。如利用分子生物学技术检测甲状腺结节中的基因突变,辅助判断结节的良恶性;开发新型的影像学检查手段,提高对结节的诊断准确性。在治疗方面,国外手术治疗的技术较为成熟,同时也在积极探索微创治疗、药物治疗等新的治疗方法。
在大模型应用于医疗领域方面,国外的研究和实践处于领先地位。一些国际知名的科技公司和科研机构开发了多种医疗大模型,并在疾病诊断、预测、药物研发等方面进行了广泛的应用研究。在结节性甲状腺肿的诊疗中,国外有研究尝试利用大模型整合患者的临床数据、影像数据和基因数据,构建预测模型,对结节的良恶性、恶变风险以及手术预后进行预测。例如,有研究通过对大量甲状腺结节患者的超声图像和临床信息进行深度学习,建立了基于卷积神经网络的甲状腺结节良恶性预测模型,取得了较高的准确率。
在国内,随着甲状腺疾病发病率的上升,对结节性甲状腺肿的研究也日益受到重视。国内学者在结节性甲状腺肿的流行病学、发病机制、诊断和治疗等方面进行了大量研究。在流行病学研究中,通过大规模的调查,明确了我国不同地区结节性甲状腺肿的患病率和发病特点,为疾病的防控提供了依据。在诊断方面,国内各大医院普遍开展了超声、细针穿刺活检等检查项目,并结合临床经验,提高了结节性甲状腺肿的诊断水平。在治疗上,国内在手术治疗技术不断进步的同时,也在积极引进和推广微创治疗技术,如腔镜甲状腺手术、射频消融术等,减少手术创伤,提高患者的生活质量。
在大模型在医疗领域的应用方面,国内也取得了显著进展。众多科研机构和企业加大了对医疗大模型的研发投入,一些具有自主知识产权的医疗大模型相继问世。在结节性甲状腺肿的诊疗研究中,国内学者利用机器学习、深度学习等技术,对患者的临床资料、影像数据等进行分析,建立了多种预测模型,用于评估结节的良恶性、预测手术风险和术后复发等。然而,目前国内大模型在结节性甲状腺肿诊疗中的应用仍处于探索阶段,在模型的准确性、泛化能力以及临床应用的规范性等方面还存在一些问题,需要进一步的研究和改进。
二、大模型预测原理与方法
2.1 相关大模型概述
本研究采用的大模型为基于深度学习的 Transformer 架构模型,它在自然语言处理和图像识别等领域展现出了强大的性能,近年来在医疗领域的应用也逐渐广泛。Transformer 模型的核心在于其自注意力机制,能够对输入数据中的各个元素进行全局的关联分析,有效捕捉数据中的长距离依赖关系。在结节性甲状腺肿的预测中,这一特性使得模型可以综合考虑患者的多种临床信息,如病史、症状、体征、影像检查结果以及实验室检查数据等,而无需像传统循环神经网络那样按顺序处理数据,大大提高了模型的效率和准确性 。
与其他传统机器学习模型相比,Transformer 架构的大模型具有更强的特征提取能力和泛化能力。传统机器学习模型通常需要人工进行特征工程,提取的特征往往具有局限性,难以全面反映疾病的复杂特征。而大模型能够自动从大量数据中学习到深层次的特征表示,挖掘出数据中隐藏的模式和规律。例如,在处理甲状腺超声图像时,大模型可以自动识别出结节的形态、边界、回声等关键特征,以及这些特征之间的复杂关系,从而更准确地判断结节的性质和预测疾病的发展。此外,大模型在大规模数据集上进行预训练,使其具备了较强的泛化能力,能够适应不同患者群体和临床场景的变化,提高模型的可靠性和适用性。
2.2 数据收集与预处理
数据收集主要来源于多家医院的电子病历系统,涵盖了近 [X] 年来收治的结节性甲状腺肿患者的临床资料。收集的信息包括患者的基本信息,如年龄、性别、民族、联系方式等;病史信息,如既往甲状腺疾病史、家族甲状腺疾病史、其他慢性疾病史、药物过敏史等;症状与体征信息,如颈部肿块的大小、质地、活动度、压痛情况,是否伴有吞咽困难、呼吸困难、声音嘶哑等症状,以及甲状腺肿大的程度、形态等;影像检查数据,包括甲状腺超声、CT、MRI 等图像资料,以及相关的影像报告,详细记录了结节的位置、大小、形态、边界、回声、血流信号等特征;实验室检查数据,如甲状腺功能指标(T3、T4、TSH、FT3、FT4 等)、甲状腺自身抗体(TPOAb、TGAb、TRAb 等)、血常规、凝血功能、肝肾功能等指标;病理检查结果,包括细针穿刺活检和术后病理切片的诊断结果,明确结节的良恶性、病理类型等。
在数据收集过程中,严格遵循患者隐私保护原则,对患者的个人信息进行加密处理,并获得患者的知情同意。同时,建立数据质量控制机制,对收集到的数据进行初步审核,确保数据的完整性和准确性,及时发现并纠正数据中的错误和缺失值。
数据预处理是提高模型性能的关键步骤。首先进行数据清洗,去除重复记录、异常值和错误数据。对于缺失值,采用多种方法进行处理。对于数值型数据,如年龄、结节大小等,若缺失值较少,采用均值、中位数或基于机器学习算法的预测值进行填充;若缺失值较多,则根据数据的分布特征和相关性,采用更复杂的插补方法,如多重填补法。对于分类数据,如性别、病理类型等,若缺失值较少,根据其出现的频率进行填充;若缺失值较多,则将其作为一个新的类别进行处理。
接着对数据进行归一化处理,将不同特征的数据转换到相同的尺度范围,以避免某些特征因数值较大而对模型训练产生过大影响。对于数值型特征,采用最小 - 最大归一化方法,将数据映射到 [0, 1] 区间;对于某些服从正态分布的特征,也可采用 Z-score 归一化方法,使其均值为 0,标准差为 1。对于分类特征,采用独热编码(One-Hot Encoding)将其转换为数值型向量,以便模型进行处理。
对于影像数据,进行图像增强处理,通过旋转、缩放、平移、翻转等操作,增加数据的多样性,扩充数据集规模,提高模型的泛化能力。同时,对图像进行降噪、灰度化等预处理,以提高图像的质量和清晰度,便于模型提取特征。
2.3 模型训练与验证
使用预处理后的数据对大模型进行训练。将数据集按照 7:2:1 的比例划分为训练集、验证集和测试集。训练集用于模型的参数学习,验证集用于调整模型的超参数,如学习率、层数、隐藏层神经元数量等,以防止模型过拟合,测试集用于评估模型的最终性能。
在训练过程中,采用交叉熵损失函数作为模型的优化目标,通过反向传播算法不断调整模型的参数,使得模型的预测结果与真实标签之间的差异最小化。使用 Adam 优化器对模型进行优化,它结合了 Adagrad 和 RMSProp 算法的优点,能够自适应地调整学习率,加快模型的收敛速度。设置合适的学习率,如初始学习率为 0.001,并采用学习率衰减策略,随着训练的进行逐渐降低学习率,以提高模型的训练效果。训练过程中,对模型的训练损失和验证损失进行实时监测,当验证损失在连续多个 epoch 中不再下降时,认为模型已经收敛,停止训练,以避免过拟合。
模型训练完成后,使用测试集对模型进行验证。采用多种评估指标来衡量模型的性能,包括准确率(Accuracy)、召回率(Recall)、精确率(Precision)、F1 值(F1-Score)以及受试者工作特征曲线下面积(AUC-ROC)等。准确率反映了模型预测正确的样本占总样本的比例;召回率表示实际为正例的样本中被模型正确预测为正例的比例;精确率是模型预测为正例的样本中实际为正例的比例;F1 值是精确率和召回率的调和平均数,综合反映了模型的性能;AUC-ROC 则用于评估模型在不同阈值下的分类性能,其值越接近 1,说明模型的分类效果越好。
通过在测试集上的验证,本研究构建的大模型在结节性甲状腺肿的恶变风险预测和并发症风险预测方面均取得了较好的性能。例如,在恶变风险预测中,模型的准确率达到了 [X]%,召回率为 [X]%,精确率为 [X]%,F1 值为 [X],AUC-ROC 为 [X];在并发症风险预测中,各项评估指标也达到了较为理想的水平。这些结果表明,该模型具有较高的准确性和可靠性,能够为临床医生提供有价值的决策支持 。
三、术前预测与评估
3.1 结节性质预测
3.1.1 良恶性判断
大模型在判断结节良恶性时,首先对甲状腺超声影像进行深入分析。通过卷积神经网络等技术,自动识别超声图像中结节的多种特征。例如,对于结节的形态,模型能够准确区分规则与不规则形态,不规则形态往往是恶性结节的重要特征之一;在边界方面,清晰的边界多见于良性结节,而边界模糊、呈毛刺状或浸润性的边界则与恶性结节的关联性较高。在回声特征上,低回声或极低回声被视为恶性结节的常见表现,而高回声则更多地与良性结节相关 。此外,结节内的微钙化,特别是呈沙砾体样的微钙化,在超过 50% 的甲状腺乳头状癌结节中可见,是恶性结节的一个重要特征,大模型能够精准识别这些微钙化并纳入判断体系。
除超声影像外,大模型还融合患者的临床特征数据进行综合判断。年龄是一个重要因素,一般来说,儿童和年轻人的甲状腺结节恶性比例相对较高;性别方面,虽然女性甲状腺结节的发病率普遍高于男性,但男性结节的恶性风险相对更高。家族史也是关键因素之一,若家族中有甲状腺癌患者,个体结节的恶性风险会显著增加。大模型会将这些临床特征与超声影像特征相结合,通过复杂的算法和模型训练,建立起准确的结节良恶性判断模型。例如,在对大量病例数据的学习过程中,模型会自动挖掘出不同特征组合与结节良恶性之间的潜在关系,从而提高判断的准确性 。
3.1.2 与传统诊断方法对比
传统诊断方法中,超声检查是最常用的手段之一。经验丰富的超声医师能够通过观察结节的形态、边界、回声、钙化等特征来初步判断结节的良恶性,但这种判断很大程度上依赖于医师的经验和专业水平。不同医师对同一结节的判断可能存在差异,而且对于一些微小或不典型的结节,超声检查的误诊率和漏诊率相对较高。细针穿刺活检虽然能够提供较为准确的病理诊断,但其属于有创检查,可能会给患者带来一定的痛苦,且存在约 5% - 10% 的假阴性率和 1% - 3% 的假阳性率 。
相比之下,大模型具有明显的优势。大模型能够处理海量的数据,通过对大量病例的学习,积累丰富的诊断经验,避免了人为因素的干扰,具有更高的稳定性和一致性。在准确性方面,本研究中构建的大模型在判断结节良恶性时,准确率达到了 [X]%,显著高于传统超声检查的 [X]% 和细针穿刺活检的 [X]%。在可靠性上,大模型能够综合考虑多种因素,降低了误诊和漏诊的风险。例如,在面对一些复杂病例时,传统方法可能会因为单一特征的不典型而出现误判,而大模型能够从整体上分析各种特征之间的关系,做出更准确的判断 。
3.2 手术风险预测
3.2.1 影响手术风险的因素分析
年龄是影响手术风险的重要因素之一。随着年龄的增长,患者的身体机能逐渐下降,心肺功能、肝肾功能等重要脏器功能也会出现不同程度的减退。例如,老年患者可能存在心肺储备功能不足,在手术过程中对麻醉和手术创伤的耐受性较差,容易出现心肺功能衰竭等严重并发症。据统计,年龄大于 60 岁的结节性甲状腺肿患者,手术并发症的发生率比年轻患者高出 [X]% 。
基础疾病也是不可忽视的因素。患有高血压、糖尿病、心脏病等基础疾病的患者,手术风险明显增加。高血压患者在手术过程中,由于情绪紧张、手术刺激等因素,血压容易波动,可能导致脑血管意外、心肌梗死等并发症的发生;糖尿病患者血糖控制不佳时,手术切口愈合困难,感染的风险增加,术后还可能出现酮症酸中毒等严重并发症;心脏病患者在手术中可能因心脏负担加重而诱发心律失常、心力衰竭等。例如,一项研究表明,合并糖尿病的结节性甲状腺肿患者,术后感染的发生率是无糖尿病患者的 [X] 倍 。
结节位置对手术风险也有显著影响。当结节位于甲状