糖尿病大模型预测及临床应用研究智能管理系统技术文档

1. 数据工程规范

1.1 多源数据集成

# 数据接入示例代码
class MedicalDataPipeline:
    def __init__(self):
        self.ecg_parser = HL7v2Parser()  # 心电数据解析
        self.glucose_reader = CGMAPI(sample_rate=5)  # 动态血糖监测
        self.img_preproc = DICOMPreprocessor(norm_type='N4')  # 影像标准化

    def temporal_alignment(self):
        # 实现多模态数据时间轴对齐
        use DynamicTimeWarping(dim=3) 

1.2 特征工程架构

特征类型 处理方法 输出维度
时序生理信号 小波变换+LSTM编码 128
医学影像 3D ResNet-50特征提取 512
生化指标 异常值鲁棒标准化(RobustScaler) 64

2. 核心模型架构

2.1 分层预测网络

低风险
高风险
原始数据
特征编码层
风险分级网关
常规LSTM预测器
多任务Transformer
并发症预测头
手术应激模拟头

2.2 动态血糖预测模块

  • 采用Neural ODE建模代谢动力学:
    d G ( t ) d t = f θ ( G ( t ) , I ( t ) , M ( t ) ) \frac{dG(t)}{dt} = f_\theta(G(t),I(t),M(t)) dt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值