一、数据收集与预处理系统
1.1 多模态数据集成模块
def load_data(patient_id):
basic_info = database.query("SELECT * FROM patient_info WHERE id=%s", patient_id)
raw_eeg = eeg_loader.read_eeg(patient_id)
mri_data = dicom_parser.parse_mri(patient_id)
lab_results = lab_system.get_results(patient_id)
return merge_data(basic_info, raw_eeg, mri_data, lab_results)
1.2 数据预处理流程
二、大模型构建与训练系统
2.1 模型架构设计
class GCSE_Predictor(nn.Module):
def __init__(self):
super().__init__()
self.eeg_encoder = EEG_Transformer()
self.mri_encoder = MRI_CNN()
self.fusion = Multimodal_Fusion()
self.classifier = nn.Linear(...)
def forward(self, eeg, mri, lab_data):
eeg_feat = self.eeg_encoder(eeg)
mri_feat = self.mri_encoder(mri)
fused = self.fusion(eeg_feat, mri_feat, lab_data)
return self.classifier(fused)
2.2 训练流程