基于大模型的全面惊厥性癫痫持续状态技术方案


一、数据收集与预处理系统

1.1 多模态数据集成模块

# 伪代码:多模态数据加载与整合
def load_data(patient_id):
    # 加载患者基本信息
    basic_info = database.query("SELECT * FROM patient_info WHERE id=%s", patient_id)
    # 加载脑电图数据
    raw_eeg = eeg_loader.read_eeg(patient_id)
    # 加载影像学数据
    mri_data = dicom_parser.parse_mri(patient_id)
    # 加载实验室数据
    lab_results = lab_system.get_results(patient_id)
    return merge_data(basic_info, raw_eeg, mri_data, lab_results)

1.2 数据预处理流程

异常值处理
缺失值填充
原始数据输入
数据清洗
标准化处理
特征工程
多模态对齐
预处理完成

二、大模型构建与训练系统

2.1 模型架构设计

# 伪代码:基于Transformer的多模态融合模型
class GCSE_Predictor(nn.Module):
    def __init__(self):
        super().__init__()
        self.eeg_encoder = EEG_Transformer()  # 脑电特征提取
        self.mri_encoder = MRI_CNN()          # 影像特征提取
        self.fusion = Multimodal_Fusion()      # 跨模态注意力融合
        self.classifier = nn.Linear(...)       # 输出层
    
    def forward(self, eeg, mri, lab_data):
        eeg_feat = self.eeg_encoder(eeg)
        mri_feat = self.mri_encoder(mri)
        fused = self.fusion(eeg_feat, mri_feat, lab_data)
        return self.classifier(fused)

2.2 训练流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值