三台主机建立Hadoop小集群

我们将介绍如何用三台主机建立Hadoop小集群,先用VMWare安装三台虚拟机(可以先安装一台,然后clone两台),按照节点安排及网络拓扑配置网络。

AD:


    部署环境:

    OS:Redhat 5.5 Enterprise

    JDK:jdk1.6.0_32

    Hadoop:Hadoop-0.20.2

    VMWare:7.0

    节点安排及网络拓扑:

    节点类型节点IP节点hostname

    master节点 192.168.40.5master

    slave节点  192.168.40.5master(此时,master既是master节点,也是slave节点)

    192.168.40.6salve1

    192.168.40.7slave2

    secondaryName节点192.168.40.5master(此时,master既是master节点,也是slave节点,也是secondaryNameNode)

    配置步骤:

    一、网络配置

    首先关闭三台虚拟机的防火墙,步骤可参考:关闭防火墙

    先用VMWare安装三台虚拟机(可以先安装一台,然后clone两台),按照节点安排及网络拓扑配置网络,先配置master节点的网络:

    ① 静态网络IP配置见VMware Redhat网络配置,分别将三台虚拟机的IP进行设置

    ② 修改主机名:vi /etc/hosts(解析IP要用),添加

    192.168.40.5 master
    192.168.40.6 slave1
    192.168.40.7 slave2

    ③ 按照此过程及相同数据(除了IP地址不同)对三台虚拟机进行配置

    二、 安装jdk

    Hadoop 是用java开发的,Hadoop的编译及mapreduce的运行都需要使用JDK,所以JDK是必须安装的

    ① 下载jdk,http://www.oracle.com/technetwork/java/javase/downloads/index.html

    ② 在用户根目录下,建立bin文件夹:mkdir ~/bin(也可放在其他处,个人习惯而已)

    ③ 改变执行权限:chmod u+x jdk-6u26-linux-i586.bin

    ④ 执行文件:sudo -s ./jdk-6u26-linux-i586.bin,一路确定

    ⑤ 配置环境变量:vi ~/.bash_profile,添加:

       
       
    1. export JAVA_HOME=/root/bin/jdk1.6.0_32  
    2. export PATH=$PATH:$JAVA_HOME/bin 

    ⑥ 使profile文件生效:source ~/.bash_profile

    ⑦ 验证是否配置成功:which java

    [root@master ~]# which java
    /root/bin/jdk1.6.0_32/bin/java 配置生效。也可输入java -version, java, javac进一步确定

    ⑧ 分别相同配置另外两台主机

       
       
    1. <JDK Installation End> 

    三、建立ssh互信

    hadoop 需要通过ssh互信来启动slave里表中各个主机的守护进程,所以SSH是必须安装的(redhat 5.5 Enterprise 以默认安装)。但是是否建立ssh互信(即无密码登陆)并不是必须的,但是如果不配置,每次启动hadoop,都需要输入密码以便登录到每台机器的Datanode上,而一般的hadoop集群动辄数百或数千台机器,因此一般来说都会配置ssh互信。

    ① 生成密钥并配置ssh无密码登陆主机(在master主机)

       
       
    1. ssh -keygen -t dsa -P '' -f ~/.ssh/id_dsa  
    2. cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys 

    ② 将authorized_keys文件拷贝到两台slave主机

       
       
    1. scp authorized_keys slave1:~/.ssh/  
    2. scp authorized_keys slave2:~/.ssh/ 

    ③ 检查是否可以从master无密码登陆slave机

    ssh slave1(在master主机输入) 登陆成功则配置成功,exit退出slave1返回master

    四、配置Hadoop

    ① 下载:点击到下载页面,选择hadoop-0.20.2.tar.gz

    ② 放到~/bin下解压: tar -xzvf hadoop-0.20.2.tar.gz

    ③ 解压后进入:~/bin/hadoop-0.20.2/conf/,修改配置文件:

    修改hadoop-env.sh:

    export JAVA_HOME=/root/bin/jdk1.6.0_32
    hadoop-env.sh里面有这一行,默认是被注释的,只需要把注释去掉,并且把JAVA_HOME 改成你的java安装目录即可

    修改core-site.xml

       
       
    1. <?xml version="1.0"?> 
    2. <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
    3.  
    4. <!-- Put site-specific property overrides in this file. --> 
    5.  
    6. <configuration> 
    7.   <property> 
    8.     <name>fs.default.name</name> 
    9.     <value>hdfs://master:9000</value> 
    10.   </property> 
    11.   <property> 
    12.     <name>Hadoop.tmp.dir</name> 
    13.     <value>/tmp/hadoop-root</value> 
    14.   </property> 
    15. </configuration> 

    注释一:hadoop分布式文件系统文件存放位置都是基于hadoop.tmp.dir目录的,namenode的名字空间存放地方就是 ${hadoop.tmp.dir}/dfs/name, datanode数据块的存放地方就是 ${hadoop.tmp.dir}/dfs/data,所以设置好hadoop.tmp.dir目录后,其他的重要目录都是在这个目录下面,这是一个根目录。

    注释二:fs.default.name,设置namenode所在主机,端口号是9000

    注释三:core-site.xml 对应有一个core-default.xml, hdfs-site.xml对应有一个hdfs-default.xml,mapred-site.xml对应有一个mapred-default.xml。这三个defalult文件里面都有一些默认配置,现在我们修改这三个site文件,目的就覆盖default里面的一些配置

    修改hdfs-site.xml

       
       
    1. <?xml version="1.0"?> 
    2. <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
    3.  
    4. <!-- Put site-specific property overrides in this file. --> 
    5.  
    6. <configuration> 
    7.   <property> 
    8.     <name>dfs.replication</name> 
    9.     <value>3</value> 
    10.   </property> 
    11. </configuration> 

    dfs.replication,设置数据块的复制次数,默认是3,如果slave节点数少于3,则写成相应的1或者2

    修改mapred-site.xml

       
       
    1. <?xml version="1.0"?> 
    2. <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
    3.  
    4. <!-- Put site-specific property overrides in this file. --> 
    5.  
    6. <configuration> 
    7.   <property> 
    8.     <name>mapred.job.tracker</name> 
    9.     <value>http://master:9001</value> 
    10.   </property> 
    11. </configuration> 

    mapred.job.tracker,设置jobtracker所在机器,端口号9001

    修改masters

    master     


    虽然masters内写的是master,但是个人感觉,这个并不是指定master节点,而是配置secondaryNameNode

    修改slaves

    master
    slave1
    slave2
     
    配置了集群中所有slave节点

    ④ 添加hadoop环境变量,并 source ~/.bash_profile使之生效

       
       
    1. export JAVA_HOME=/root/bin/jdk1.6.0_32  
    2. export HADOOP_HOME=/root/bin/hadoop-0.20.2 
    3. export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin 

    ⑤ 将已经配置好的hadoop-0.20.2,分别拷贝到另外两台主机,并做相同配置

    ⑥ 此时,hadoop的集群配置已经完成,输入hadoop,则可看到hadoop相关的操作

       
       
    1. [root@master ~]# hadoop  
    2. Usage: hadoop [--config confdir] COMMAND  
    3. where COMMAND is one of:  
    4.   namenode -format     format the DFS filesystem  
    5.   secondarynamenode    run the DFS secondary namenode  
    6.   namenode             run the DFS namenode  
    7.   datanode             run a DFS datanode  
    8.   dfsadmin             run a DFS admin client  
    9.   mradmin              run a Map-Reduce admin client  
    10.   fsck                 run a DFS filesystem checking utility  
    11.   fs                   run a generic filesystem user client  
    12.   balancer             run a cluster balancing utility  
    13.   jobtracker           run the MapReduce job Tracker node  
    14.   pipes                run a Pipes job  
    15.   tasktracker          run a MapReduce task Tracker node  
    16.   job                  manipulate MapReduce jobs  
    17.   queue                get information regarding JobQueues  
    18.   version              print the version  
    19.   jar <jar>            run a jar file  
    20.   distcp <srcurl> <desturl> copy file or directories recursively  
    21.   archive -archiveName NAME <src><dest> create a hadoop archive  
    22.   daemonlog            get/set the log level for each daemon  
    23.  or  
    24.   CLASSNAME            run the class named CLASSNAME  
    25. Most commands print help when invoked w/o parameters. 

    ⑦ 此时,首先格式化hadoop

    在命令行里执行,hadoop namenode -format

    ⑧ 启动hadoop

    在命令行里执行,start-all.sh,或者执行start-dfs.sh,再执行start-mapred.sh

    ⑨ 输入jps,查看启动的服务进程


    master节点:[root@master ~]# jps
    25429 SecondaryNameNode
    25500 JobTracker
    25201 NameNode
    25328 DataNode
    18474 Jps
    25601 TaskTracker

    slave节点:[root@slave1 ~]# jps
    4469 TaskTracker
    4388 DataNode
    29622 Jps

    如上显示,则说明相应的服务进程都启动成功了。

    圈10(额,像①一样的圈出不来了(⊙o⊙)) 查看hdfs分布式文件系统的 文件目录结构

    hadoop fs -ls /

    此时发现为空,因为确实什么也没有,运行一下命令,则可创建一个文件夹:

    hadoop fs -mkdir /newDir

    再次执行hadoop fs -ls /,则会看到newDir文件夹,关于hadoop fs 命令,参见:HDFS 命令

    圈11 运行hadoop 类似hello world的程序

    本来,都是以word count来运行的,但是还得建文件夹之类的,有一个更简单的,就是example中的计算π值的程序,我们来计算一下,进入hadoop目录,运行如下:

       
       
    1.  
    2. [root@slave1 hadoop-0.20.2]# hadoop jar hadoop-0.20.2-examples.jar pi 4 2  
    3. Number of Maps  = 4 
    4. Samples per Map = 2 
    5. Wrote input for Map #0  
    6. Wrote input for Map #1  
    7. Wrote input for Map #2  
    8. Wrote input for Map #3  
    9. Starting Job  
    10. 12/05/20 09:45:19 INFO mapred.FileInputFormat: Total input paths to process : 4  
    11. 12/05/20 09:45:19 INFO mapred.JobClient: Running job: job_201205190417_0005  
    12. 12/05/20 09:45:20 INFO mapred.JobClient:  map 0% reduce 0%  
    13. 12/05/20 09:45:30 INFO mapred.JobClient:  map 50% reduce 0%  
    14. 12/05/20 09:45:31 INFO mapred.JobClient:  map 100% reduce 0%  
    15. 12/05/20 09:45:45 INFO mapred.JobClient:  map 100% reduce 100%  
    16. 12/05/20 09:45:47 INFO mapred.JobClient: Job complete: job_201205190417_0005  
    17. 12/05/20 09:45:47 INFO mapred.JobClient: Counters: 18  
    18. 12/05/20 09:45:47 INFO mapred.JobClient:   Job Counters   
    19. 12/05/20 09:45:47 INFO mapred.JobClient:     Launched reduce tasks=1 
    20. 12/05/20 09:45:47 INFO mapred.JobClient:     Launched map tasks=4 
    21. 12/05/20 09:45:47 INFO mapred.JobClient:     Data-local map tasks=4 
    22. 12/05/20 09:45:47 INFO mapred.JobClient:   FileSystemCounters  
    23. 12/05/20 09:45:47 INFO mapred.JobClient:     FILE_BYTES_READ=94 
    24. 12/05/20 09:45:47 INFO mapred.JobClient:     HDFS_BYTES_READ=472 
    25. 12/05/20 09:45:47 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=334 
    26. 12/05/20 09:45:47 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=215 
    27. 12/05/20 09:45:47 INFO mapred.JobClient:   Map-Reduce Framework  
    28. 12/05/20 09:45:47 INFO mapred.JobClient:     Reduce input groups=8 
    29. 12/05/20 09:45:47 INFO mapred.JobClient:     Combine output records=0 
    30. 12/05/20 09:45:47 INFO mapred.JobClient:     Map input records=4 
    31. 12/05/20 09:45:47 INFO mapred.JobClient:     Reduce shuffle bytes=112 
    32. 12/05/20 09:45:47 INFO mapred.JobClient:     Reduce output records=0 
    33. 12/05/20 09:45:47 INFO mapred.JobClient:     Spilled Records=16 
    34. 12/05/20 09:45:47 INFO mapred.JobClient:     Map output bytes=72 
    35. 12/05/20 09:45:47 INFO mapred.JobClient:     Map input bytes=96 
    36. 12/05/20 09:45:47 INFO mapred.JobClient:     Combine input records=0 
    37. 12/05/20 09:45:47 INFO mapred.JobClient:     Map output records=8 
    38. 12/05/20 09:45:47 INFO mapred.JobClient:     Reduce input records=8 
    39. Job Finished in 28.952 seconds  
    40. Estimated value of Pi is 3.50000000000000000000 

    计算PI值为3.5,还算靠近,至于输出log日志,就不介绍了,以后学的稍微深入,可多做了解。

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值