问题
- 边缘概率
- 最大后验概率状态
- 求归一化因子
变量消元法
- 基本思想
- 逐步从联合概率中消除变量,求解边缘概率
- 变量消除的顺序:最有消元顺序是NP难问题
- 可以通过一些启发式的规则优化,如最少临接点
- 逐步从联合概率中消除变量,求解边缘概率
- 算法
- 边缘概率
- Sum Product VE
- 最大后验概率状态(MAP)
- max-sum elimination
- 边缘概率
- 应用
- 求边缘概率
- 求条件概率
团树传播算法
- 与变量消元法对比
- 相同点
- 本质上相同,只是从不同的角度出发
- 不同点
- 变量消元法
- 把全局概率推理转化成局部因子之间的乘积和求和运算
- 团树传播算法
- 先构造一个团树
- 把概率推理计算,转化成团树之间的消息传递
- 消息传递,本质上也是因子之间的乘积和求和
- 变量消元法
- 相同点
- 聚类图(Cluster Graphs)
- 团树(clique tree):性质
- 构建算法
- 通过变量消元法构建
- 性质
- 树状图
- 在变量消元过程中,每个中间因子被使用一次,每个聚类图的节点传递一个消息给唯一的另一个节点,因此整个变量消元过程产生的聚类图为一个树状图
- 族保持
- 概率图模型的每个因子必须出现在某个消元步骤,所以满足族保持性质
- 执行交叉性质(running intersection property)
- 对于聚类图,如果对于任意变量X属于Ci,X属于Cj,若X也出现在两个节点之间唯一路径上的每个节点,则该聚类图满足执行交叉性质。
- 树状图
- 团树传播算法
- 目的
- 通过团树传播算法计算变量的边缘概率
- 步骤
- 利用变量消元构造团树,团树节点势函数初始化
- 选取变量X所在的节点为根节点
- 计算叶子节点到根节点的消息
- 根节点的势函数乘以来自邻节点的消息
- 计算变量X所在节点的边缘概率
- 方法一
- 分别选取不同的节点作为根节点,多次计算边缘概率
- 方法二
- 选取任意节点
- 先从叶子节点传递消息给根节点
- 再从根节点传递消息至叶子结点
- 每个节点分别计算自身的势函数乘以来自邻节点的消息
- 方法一
- 目的
- 构建算法
- 团树(clique tree):性质
信念传播算法(BP)
- 特点
- 在树状图模型上收敛,且能得到准确推理结果
- 在一般图模型上,BP算法为近似推理算法
- Bethe聚类图
- 本质上:等价于 因子图
- 算法流程
- 节点势函数初始化
- 所有消息初始化为1
- 选取所有边,迭代更新消息
- 当消息传递收敛时,计算所有节点的信念
- 在树状图模型中,BP算法收敛,且所有节点的信念收敛为每个节点的边缘概率
- BP 算法与团树传播算法的联系
- 消息传递
- 团树传播算法先构造团树,然后在团树上进行消息传递计算
- BP算法可以在团树上执行,也可以直接在因子图上执行。当BP算法在因子图上执行时,消息传递机制等价于团树传播算法
- BP算法可以直接在因子图上执行,相比于团树传播算法,没有构造团树的环节,算法更简洁。BP算法只能保持在树状图模型上收敛。
- 消息传递
二值图切割
- 前提条件
- 每个变量的取值数为 2
- 边上的势函数满足次模式不等式
- 概念
- 最小 s-t 切分
- 最大流问题
- 图可表示