机器学习 --- 概率图 - 精确推理

问题

  • 边缘概率
  • 最大后验概率状态
  • 求归一化因子

变量消元法

  • 基本思想
    • 逐步从联合概率中消除变量,求解边缘概率
      • 变量消除的顺序:最有消元顺序是NP难问题
      • 可以通过一些启发式的规则优化,如最少临接点
  • 算法
    • 边缘概率
      • Sum Product VE
    • 最大后验概率状态(MAP)
      • max-sum elimination
  • 应用
    • 求边缘概率
    • 求条件概率

团树传播算法

  • 与变量消元法对比
    • 相同点
      • 本质上相同,只是从不同的角度出发
    • 不同点
      • 变量消元法
        • 把全局概率推理转化成局部因子之间的乘积和求和运算
      • 团树传播算法
        • 先构造一个团树
        • 把概率推理计算,转化成团树之间的消息传递
        • 消息传递,本质上也是因子之间的乘积和求和
  • 聚类图(Cluster Graphs)
    • 团树(clique tree):性质
      • 构建算法
        • 通过变量消元法构建
      • 性质
        • 树状图
          • 在变量消元过程中,每个中间因子被使用一次,每个聚类图的节点传递一个消息给唯一的另一个节点,因此整个变量消元过程产生的聚类图为一个树状图
        • 族保持
          • 概率图模型的每个因子必须出现在某个消元步骤,所以满足族保持性质
        • 执行交叉性质(running intersection property)
          • 对于聚类图,如果对于任意变量X属于Ci,X属于Cj,若X也出现在两个节点之间唯一路径上的每个节点,则该聚类图满足执行交叉性质。
      • 团树传播算法
        • 目的
          • 通过团树传播算法计算变量的边缘概率
        • 步骤
          • 利用变量消元构造团树,团树节点势函数初始化
          • 选取变量X所在的节点为根节点
          • 计算叶子节点到根节点的消息
          • 根节点的势函数乘以来自邻节点的消息
          • 计算变量X所在节点的边缘概率
            • 方法一
              • 分别选取不同的节点作为根节点,多次计算边缘概率
            • 方法二
              • 选取任意节点
              • 先从叶子节点传递消息给根节点
              • 再从根节点传递消息至叶子结点
              • 每个节点分别计算自身的势函数乘以来自邻节点的消息

信念传播算法(BP)

  • 特点
    • 在树状图模型上收敛,且能得到准确推理结果
    • 在一般图模型上,BP算法为近似推理算法
  • Bethe聚类图
    • 本质上:等价于 因子图
  • 算法流程
    • 节点势函数初始化
    • 所有消息初始化为1
    • 选取所有边,迭代更新消息
    • 当消息传递收敛时,计算所有节点的信念
      • 在树状图模型中,BP算法收敛,且所有节点的信念收敛为每个节点的边缘概率
  • BP 算法与团树传播算法的联系
    • 消息传递
      • 团树传播算法先构造团树,然后在团树上进行消息传递计算
      • BP算法可以在团树上执行,也可以直接在因子图上执行。当BP算法在因子图上执行时,消息传递机制等价于团树传播算法
    • BP算法可以直接在因子图上执行,相比于团树传播算法,没有构造团树的环节,算法更简洁。BP算法只能保持在树状图模型上收敛。

二值图切割

  • 前提条件
    • 每个变量的取值数为 2
    • 边上的势函数满足次模式不等式
  • 概念
    • 最小 s-t 切分
    • 最大流问题
    • 图可表示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值