自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(142)
  • 收藏
  • 关注

原创 模型翻车元凶解剖:一文彻底搞懂欠拟合VS过拟合

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-12 21:44:34 720

原创 模型翻车元凶解剖:一文彻底搞懂欠拟合VS过拟合(下)

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-12 21:43:53 345

原创 模型翻车元凶解剖:一文彻底搞懂欠拟合VS过拟合

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-11 22:33:51 569

原创 模型翻车元凶解剖:一文彻底搞懂欠拟合VS过拟合(下)

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-06-11 22:33:38 282

原创 《Python脚本炼金术:从数据清洗到AI模型,解锁高效开发秘籍》下

另外,每个模块底部提供了对于官网文档,更加方便的查询具体的使用方法。内容由简到难,如果对你有帮助的话希望。

2025-06-10 23:13:35 755

原创 《Python脚本炼金术:从数据清洗到AI模型,解锁高效开发秘籍》

另外,每个模块底部提供了对于官网文档,更加方便的查询具体的使用方法。内容由简到难,如果对你有帮助的话希望。

2025-06-10 23:13:22 922

原创 线性回归可视化完全手册:10张关键图表助你深入理解模型(下)

至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。

2025-06-08 16:42:42 972

原创 线性回归可视化完全手册:10张关键图表助你深入理解模型

至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。

2025-06-08 16:41:31 770

原创 深度学习算法大观园:从自编码器到强化学习,优缺点与实战场景全解析❤

今天演示了深度学习各分支算法的优缺点和适用场景!喜欢的朋友可以。

2025-06-07 22:05:18 752

原创 快来看deep seek深度学习的左右手互博[特殊字符]

2025-06-07 21:55:21 80

原创 快进来学IT届的特征炼金术:从数据废墟中提取模型黄金 (下)

好的特征能够提高模型的性能。通过特征工程,可以处理缺失值、异常值以及数据不一致性等问题,从而提升数据的质量和可用性。特征工程直接影响了模型的性能。合适的特征选择可以提高模型的泛化能力,减少过拟合的风险;合适的特征转换和标准化可以提高模型的稳定性和收敛速度。在高维数据中,模型容易受到维度灾难的影响,即数据稀疏性增加、计算复杂度增加、模型泛化能力下降等。通过特征选择、降维等手段,可以缓解维度灾难带来的问题。特征工程是将领域知识融入到模型中的重要途径。

2025-06-06 14:57:29 594

原创 快进来学IT届的特征炼金术:从数据废墟中提取模型黄金

好的特征能够提高模型的性能。通过特征工程,可以处理缺失值、异常值以及数据不一致性等问题,从而提升数据的质量和可用性。特征工程直接影响了模型的性能。合适的特征选择可以提高模型的泛化能力,减少过拟合的风险;合适的特征转换和标准化可以提高模型的稳定性和收敛速度。在高维数据中,模型容易受到维度灾难的影响,即数据稀疏性增加、计算复杂度增加、模型泛化能力下降等。通过特征选择、降维等手段,可以缓解维度灾难带来的问题。特征工程是将领域知识融入到模型中的重要途径。

2025-06-06 14:54:01 669

原创 【高端局】组合多个弱学习器达到性能跃升的硬核集成算法

今天介绍了5个机器学习中关于集成学习的总结,包括Bagging、Boosting、Stacking、Voting、深度学习集成喜欢的朋友可以起来!

2025-03-23 12:34:41 1414

原创 sklearn库的使用【无监督学习】

无监督学习是在没有标签的数据上训练的。其主要目的可能包括聚类、降维、生成模型等。以下是,这些算法都可以通过使用sklearn。

2025-03-23 12:30:27 1010

原创 【建议收藏】10 种图表线性回归

偏差-方差权衡是一个重要的概念,它告诉我们在训练模型时要权衡这两种误差,并避免过拟合(高方差、低偏差)或欠拟合(低方差、高偏差)。杠杆值反映了每个数据点对模型参数估计的影响程度,具有高杠杆值的数据点可能会对模型的拟合产生较大影响。它通过绘制一个自变量与因变量之间的关系图,同时控制其他自变量的影响,来帮助我们理解这个自变量独立于其他变量时对因变量的影响程度。通过观察Cook's 距离,我们可以找出这些数据点,并进一步分析它们对模型的影响,以优化模型的拟合效果。这种图表有助于我们优化模型并提高预测的准确性。

2025-03-22 07:09:50 1002

原创 【IT大学生必会的】 10 种图表线性回归

至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。

2025-03-22 07:08:22 1069

原创 【纯干货】线性回归10 种图表大总结

至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。

2025-03-19 15:09:05 906

原创 【纯干货】机器学习欠拟合和过拟合总结

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-03-19 15:08:12 736

原创 【新生必会】30个较难Python脚本,建议收藏。

本篇较难,;接上篇文章,对于Pyhon的学习,上篇学习的结束相信大家对于Pyhon有了一定的理解和经验,学习完上篇文章之后再研究研究剩下的30个脚本你将会有所成就!加油!

2025-03-18 07:17:17 1110

原创 【新生必会】20个硬核Python脚本

另外,每个模块底部提供了对于官网文档,更加方便的查询具体的使用方法。内容由简到难,如果对你有帮助的话希望。

2025-03-18 07:15:30 787

原创 【IT大学生必会】深度学习各算法的优缺点和适用场景

.

2025-03-16 11:35:10 1125

原创 ❤【纯干货】Matplotlib总结,任何项目都用得到❤

❤纯 干 货❤目录1、绘制基本图形2、定制化图形3、支持多个坐标轴4、3D绘图5、动态交互绘图6、绘制地图7、绘制统计图表最后 在很多人眼里是无敌的存在,而且可以说是无敌的存在。走过数据科学的路,路上必然有 的风景在你周围。如果同一个项目,你的用了matplotlib 不仅有基本图形、定制化图形、多个坐标轴、3D绘图,还有动态交互绘图、绘制地图、绘制统计图表,甚至还有地图分布!那么谁的更吸引人呢?收藏备用,一定用的上!是一个功能强大且广泛使用的数据可视化工具,特别适用于科学计算、数据分析和数据科学领

2025-03-16 11:31:17 1023

原创 6大部分,20 个机器学习算法全面汇总!!建议收藏!(上篇)

它的基本原理是根据数据的特征来构建一颗树状结构,树的每个节点代表一个特征,每个分支代表一个特征的取值,叶节点代表输出类别或数值。对于回归问题,KNN计算最近的K个训练样本的数值输出的平均值或加权平均值,并将结果用作待预测样本的输出。例如,单链接合并规则下,两个簇之间的距离通常是两个簇内距离最近的数据点之间的距离。K 均值聚类(K-Means Clustering)是一种常见的无监督学习算法,用于将数据集划分为K个不同的簇(cluster),使得每个数据点属于距离其最近的簇的中心点。

2025-03-15 18:32:22 1078

原创 6大部分,20 个机器学习算法全面汇总!!建议收藏!(下篇)

好了,朋友们,上面咱们列举的 20 个机器学习的核心原理和思路,算是有效的帮助大家做了一个总结!每种算法都有其自身的优点和适用领域,选择算法取决于任务的性质和数据的特点。喜欢的朋友可以起来!

2025-03-15 18:32:02 606

原创 【大一新生】【公司面试】看完文章 面试再考你逻辑回归请嚣张的喊出来“so so EZ!”

逻辑回归的目标函数,通常也称为损失函数或代价函数,用于衡量模型的预测与实际观测值之间的差异。逻辑回归通常用于二分类问题,其目标是最大化观测数据属于正类别或负类别的概率,从而能够进行分类。逻辑回归的目标函数通常使用交叉熵损失函数(Cross-Entropy Loss Function)或对数损失函数(Log Loss Function),这两者通常是等价的。逻辑回归的交叉熵损失函数对于二分类问题,逻辑回归的损失函数可以表示为以下形式:其中:是损失函数。是训练样本数量。

2025-03-14 15:55:15 663

原创 【大一新生必收藏系列】❤机器学习7大方面,30个数据集。纯干货分享❤

选择适当的数据集、数据清洗、特征工程和数据预处理等步骤都需要谨慎处理,以确保模型能够在实际应用中取得良好的效果。数据集的质量和数量都是决定模型成功的关键要素。数据集的大小和质量可以影响模型的过拟合和欠拟合情况。一个好的数据集可以让模型更准确,而低质量或小规模的数据集可能导致模型表现不佳。的30个常见机器学习数据集,以及每个数据集的介绍、获取链接和可能涉及到的算法。好的数据集能够确保模型在不同数据上的泛化能力。合适的特征选择和工程能够提高模型的泛化能力。数据集的不平衡分布或偏斜可能导致模型的偏差。

2025-03-14 15:40:17 947

原创 入门程序员必会的SVM算法,大一时候这个算法帮忙完成了超级多项目

另外,非线性SVM的数学公式比较复杂,但我们可以简化为:它是一种方法,可以将数据映射到一个不同的空间,然后在那个空间中使用线性SVM。我们还有k个类别,用1到k的数字表示。它的目标是找到一个能够在数据中画出一条直线(或者高维空间中的超平面),将不同类别的数据点分隔开,并且最大化两侧最靠近这条线的数据点之间的距离。:SVM支持向量机对于训练数据中的噪声和异常点具有一定的鲁棒性,可以有效地处理输入数据中的噪声。核贝叶斯支持向量机通过学习一些已知的例子,并找到一个特殊的边界,用于将不同的事物区分开来。

2025-03-13 11:18:15 1034

原创 【大一新生必看】机器学习过拟合和欠拟合!看这一篇文章就够了

今天介绍了过拟合和欠拟合,以及代码案例,并且给出的解决方案。喜欢的朋友可以起来!

2025-03-13 11:15:55 1196

原创 【大梳理】机器学习中10种损失函数大梳理!建议收藏 1、均方误差2、平均绝对误差3、交叉熵损失4、对数损失5、多类别交叉熵损失6、二分类交叉熵损失7、余弦相似度损失 8、希尔

是在机器学习和深度学习中用来衡量模型预测值与真实标签之间差异的函数。不同的任务和模型可能需要不同的损失函数。今天就聊聊下面常见的损失函数,关于原理、使用场景,并且给出完整的代码:均方误差平均绝对误差交叉熵损失对数损失多类别交叉熵损失二分类交叉熵损失余弦相似度损失希尔伯特-施密特口袋Huber损失感知器损失ok,咱们一起来学习一下~

2025-03-09 21:09:29 1433

原创 15个硬核机器学习库。【耗时十小时整理】❤

今天就从每种 Python 库的。

2025-03-09 21:08:19 672

原创 ❤简单但是常用的线性回归十种图表 下❤o(* ̄▽ ̄*)ブ

偏差-方差权衡是一个重要的概念,它告诉我们在训练模型时要权衡这两种误差,并避免过拟合(高方差、低偏差)或欠拟合(低方差、高偏差)。杠杆值反映了每个数据点对模型参数估计的影响程度,具有高杠杆值的数据点可能会对模型的拟合产生较大影响。它通过绘制一个自变量与因变量之间的关系图,同时控制其他自变量的影响,来帮助我们理解这个自变量独立于其他变量时对因变量的影响程度。通过观察Cook's 距离,我们可以找出这些数据点,并进一步分析它们对模型的影响,以优化模型的拟合效果。这种图表有助于我们优化模型并提高预测的准确性。

2025-03-08 11:45:38 912

原创 ❤简单但是很常用的线性回归 10 种图表❤o(* ̄▽ ̄*)ブ

至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在线性回归学习中,以下10种图表是很重要的:散点图线性趋势线图残差图(Residual plot)正态概率图学习曲线方差-偏差权衡图残差对预测值图部分回归图杠杆图Cook's 距离图。

2025-03-08 11:43:51 780

原创 机器学习:在Python中sklearn库的使用,纯干货!12个小时的整理!

无监督学习是在没有标签的数据上训练的。其主要目的可能包括聚类、降维、生成模型等。以下是,这些算法都可以通过使用sklearn。

2025-03-03 08:21:14 868

原创 【建议收藏】20个硬核Python脚本,纯干货分享

另外,每个模块底部提供了对于官网文档,更加方便的查询具体的使用方法。内容由简到难,如果对你有帮助的话希望。

2025-03-01 08:09:33 456

原创 机器学习干货笔记分享:朴素贝叶斯算法

朴素贝叶斯分类是一种十分简单的分类算法,即对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。以判定外国友人为例做一个形象的比喻。若我们走在街上看到一个黑皮肤的外国友人,让你来猜这位外国友人来自哪里。十有八九你会猜是从非洲来的,因为黑皮肤人种中非洲人的占比最多,虽然黑皮肤的外国人也有可能是美洲人或者是亚洲人。但是在没有其它可用信息帮助我们判断的情况下,我们会选择可能出现的概率最高的类别,这就是朴素贝叶斯的基本思想。

2024-12-11 13:38:43 498

原创 机器学习干货笔记分享:k近邻(knn)算法

重难点:机器学习算法的基本概念和适用场景。英国统计学家George E. P. Box的名言:All models are wrong, but some are useful. 没有哪一种算法能够适用所有情况,只有针对某一种问题更有用的算法。也就是说,机器学习算法不会要求一个问题被 100%求解,取而代之的是把问题转化为最优化的问题,用不同的算法优化问题,从而比较得到尽量好的结果。因此对于数据科学家来说,理解算法显得格外重要,理解不同算法的思想可以帮助数据科学家更从容地面对不同的应用场景。

2024-12-11 13:34:55 804

原创 【耗时八个小时】机器学习过拟合和欠拟合!看这一篇文章就够了

.

2024-06-25 08:53:20 1018 1

原创 程序员最趁手的SVM算法,学完你会哭着感谢努力的自己!

另外,非线性SVM的数学公式比较复杂,但我们可以简化为:它是一种方法,可以将数据映射到一个不同的空间,然后在那个空间中使用线性SVM。我们还有k个类别,用1到k的数字表示。它的目标是找到一个能够在数据中画出一条直线(或者高维空间中的超平面),将不同类别的数据点分隔开,并且最大化两侧最靠近这条线的数据点之间的距离。:SVM支持向量机对于训练数据中的噪声和异常点具有一定的鲁棒性,可以有效地处理输入数据中的噪声。核贝叶斯支持向量机通过学习一些已知的例子,并找到一个特殊的边界,用于将不同的事物区分开来。

2024-06-25 08:52:02 1021

原创 ❤【纯干货】Matplotlib总结,任何项目都用得到❤

❤纯 干 货❤目录1、绘制基本图形2、定制化图形3、支持多个坐标轴4、3D绘图5、动态交互绘图6、绘制地图7、绘制统计图表最后 在很多人眼里是无敌的存在,而且可以说是无敌的存在。走过数据科学的路,路上必然有 的风景在你周围。如果同一个项目,你的用了matplotlib 不仅有基本图形、定制化图形、多个坐标轴、3D绘图,还有动态交互绘图、绘制地图、绘制统计图表,甚至还有地图分布!那么谁的更吸引人呢?收藏备用,一定用的上!是一个功能强大且广泛使用的数据可视化工具,特别适用于科学计算、数据分析和数据科学领

2024-06-24 14:47:38 653

原创 ❤机器学习正则化算法的总结。耗时10个小时完成。❤

Dropout 正则化的原理是,在训练期间以概率 随机地将一部分神经元的输出设置为零,称为“丢弃”。通过绘制训练误差和验证误差的曲线,以及早停法的标记点,可以更加直观地观察到模型的优化过程和选择最佳模型时的判定点。上述代码生成了一些具有噪声的样本数据,并构建了一个简单的具有Dropout正则化的神经网络模型。通过增强后的数据集,模型能够更好地捕捉到数据的不同特征和变化,使得模型能够更好地区分两个类别。通过这种方式,Dropout 正则化可以减少神经元之间的依赖性,提高模型的鲁棒性。

2024-06-24 14:45:55 557

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除