最小生成树:Swift实现

预热

一句话描述最小生成树(Minimum Spanning Trees - MST)问题:
就是求解一个所有边都带权值的图生成权值和最小的树结构。

两个碉堡的天才

  • Kruskal
  • Prim

两个(贪心)算法

  • Kruskal算法 其算法复杂度O(ElgV)
  • Prim算法 其算法复杂度O(ElgV)

几个抽象的术语

  • 切割
  • 横跨
  • 轻量级边

最小生成树的形成

每一步进行树边的选择时候要遵守循环不变式的边集合A:

每步循环之前,A是某棵最小生成树的一个子集。

每步选择时候,我们选择一条边(u, v)加入A,使得A不违反循环不变式,即A∪{(u, v)}也是该棵最小生成树的子集。我们把这样的边叫做安全边

伪代码

GENERIC-MST(G, w)

A = ?
while A 未生成树
    找到一个对A来说的安全边
    A = A ∪ {(u, v)}
return A

定理

设G = (V, E)是一个边E上定义实数权值w的连通无向图。设集合A是E的一个子集,且A包括在图G的某棵最小生成树中,设(S, V-S)是图G尊重集合A的任意一个切割,又设(u, v)是横跨切割(S, V-S)的一条轻量级边。那么边(u, v)对于集合A是安全的。

证略。。。

Kruskal算法

在Kruskal中,集合A是一个森林,每次加入集合A中的安全边永远是权重最小的连接两个不同分量的边。

中心思想

关键点在于如何在每步查找到安全边:
在所有连接森林中两棵不同树得边里面,找到权重最小的边(u, v)。

步骤如下:

  1. 初始化:将A初始化为空集,并创建|V|棵树,每棵树仅一个结点。
  2. 根据边的权值非递减进行检查,如果端点u和v不属于同一棵树则加入森林,否则导致环路形成。并将两棵树的结点合并。

算法开销

伪代码

MST-KRUSKAL(G, w)

A = ?
for each vertex v ∈ G.V
    MAKE-SET(v)
将G.E中的边按照其权值w非递减进行排序
for each edge(u, v) ∈ G.E, 按照非递减的顺序遍历
    if FIND-SET(u) != FIND-SET(v)
        A = A ∪ {(u, v)}
        UNION(u, v)
return A

Swift实现


Prim算法

中心思想

算法开销

伪代码

MST-PRIM(G, w, r)

for each u ∈ G.V
    u.key = 无穷
    u.π = NIL
r.key = 0
Q = G.V
while Q != ?
    u = EXTRACT-MIN(Q)
    for each v ∈ G.Adj[u]
        if v ∈ Q and w(u, v) < v,key
            v.π = u
            v.key = w(u, v)

Swift实现


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值