自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 【Datawhale AI夏令营】Task03学习笔记

这次主要学习数据增强、提升模型。

2024-07-20 00:16:10 741

原创 【Datawhale AI夏令营】Task02学习笔记

深度学习是机器学习一个分支,通过神经网络模拟人脑的学习方式,可以处理大量数据并且从中自动学习和提取特征,进行预测。深度学习就是将这些 神经元模型层层堆叠起来的复杂结构,按一定的层次形成一个庞大的网络,从网络最底层接收输入数据;然后通过每一层的处理,逐步提取出更高级别的特征;最后在顶层输出结果。现如今科学家将基本的神经元模型组合起来形成了多层次的网络结构,这些网络称之为。为了进一步提高模型的准确性和泛化能力,可以对模型进行以下优化。

2024-07-17 18:17:23 1652

原创 【Datawhale AI夏令营】Task01学习笔记

timm.create_model('resnet18', pretrained=True, num_classes=2) 加载预训练的ResNet-18模型,并且使用在ImageNet数据集上预训练的权重,使其有两个类别的输出。·数据移动GPU:.cuda(non_blocking=true),将non_blocking参数设置为true意思是如果数据正在被复制到GPU,此操作会立即返回。深度学习中的CNN能够识别图像、视频中的复杂特征,在Deepfake检测中,模型可以学习识别内容中的异常特征。

2024-07-14 20:24:35 371

原创 【微分方程数值解】四阶Adams公式的显式隐式的实现与比较

1.收敛性:当步长h取得充分小时,数值解能否足够精确地逼近初值问题的真解2.局部截断误差:通过前面求解的节点结果推出后续节点的值,局部截断误差为则称该算法具有p阶精度3.稳定性:最初产生的误差在以后各步的计算中是否会无限制扩大。

2024-07-02 15:20:18 1109

原创 【第四周】深度学习

(2)下面表示空间注意力机制,会对输入来的特征层在每个特征点的通道上取最大值和平均值,之后将这两个结果进行一个堆叠,利用一次通道数为1的卷积调整通道数,取一个sigmoid,此时我们获得了输入特征层每一个特征点的权值(0-1之间)。分组卷积将输入的通道分为多组,对每个组的通道都进行卷积,最后将每个组的输出合并。将 Excitation 的输出的权重看做是进过特征选择后的每个特征通道的重要性,然后通过乘法逐通道加权到先前的特征上,完成在通道维度上的对原始特征的重标定。所以它的随机性导致了每次结果不一样。

2024-07-02 15:12:13 1611

原创 【第三周】深度学习

假设LN输出维度依然是197*768,如果只有一个head,qkv的维度是197*768,如果有12个头,那么qkx的维度是197*64,一共有12组qkv,最后拼接起来,再过一层LN,维度依旧是197*768。,有效解决梯度消失(反向传播每向前乘一个小于1的误差梯度层数越多,梯度就越趋于0)和梯度爆炸(反向传播每向前乘一个大于1的误差梯度层数越多,梯度就越大)问题。其中所使用的BN,可以使一批数据所对应的数据的feature map每一个通道所对应的维度满足均值为0,方差为1的分布规律。

2024-07-02 14:59:53 524

原创 【第二周】深度学习

(1)dataloader里面shuffle 取不同值有什么区别?Shuffle为是否进行随机打乱顺序的操作,其值为true时数据随机,打乱;为false时数据顺序固定。(2)transform里,取了不同值,这个有什么区别?Transform是一种函数或变换,大致分为四大类,裁剪、翻转和旋转、图像变换、使数据增强更灵活。(3) epoch 和 batch 的区别?Epoch指整个训练数据集被神经网络完整地遍历一次的次数。Batch指每次模型权重更新时所使用的样本数。

2024-07-02 14:51:40 597

原创 【第一周】深度学习

定义数、向量、矩阵、张量定义各种张量:空张量、随机初始化张量、全0张量其数据类型为long基于现有tensor创建新tensor,继承信息、重新定义dtype定义一个矩阵m对m中的内容进行输出定义向量v对m和v进行运算转置m输出[3,8],步长是均分了20份绘制直方图矩阵拼接。

2024-07-02 14:37:30 396

原创 【微分方程数值解】改进Euler法的具体实现以及三种Euler法比较

Step1:进行改进Euler的编写,我们由公式可知改进Euler法有预估和矫正的算法实现,首先进行对T、h、t、N参数的设置。对于初值问题数值解法一般采取步进式求解,即通过前面求解的节点结果推出后续节点的值。用预估矫正实现改进Euler法的具体实现,并比较三种Euler法解决初值问题。:将所写的改进Euler写入所给的example_Euler.m文件中。:将三种方法用不同的线条绘制于同一个图中与精确解进行比较。:由实验原理中改进Euler法的公式。若某算法的局部截断误差为。三种Euler法的比较。

2024-06-19 10:23:56 703

原创 Matlab课设大作业

史教授讲授三个班的计算机课程,需要在期末考试中审阅120份考卷,史教授有2个研究生助手,小德和小华审阅期末考卷,所有试卷必须在3天内审阅完毕并公布分数,在这段时间内,小德有12h,小华有10h审阅试卷,小德每审阅一份试卷平均需要7.2min, 小华每审阅一份试卷平均需要12min, 但小德审阅的试卷有10%需要史教授重审,小华审阅的试卷有6%需要重审,那么每个研究生助手分配多少份试卷,可以使史教授重审量最少?而欧美某些国家遵循“群体免疫”的策略,通过适当措施“缓和”病毒传播的速度,而不采用封城的措施。

2024-06-09 19:21:43 2689

原创 【数学建模】探究椅子能不能在不平的地面上放稳、大包装商品是否比小包装商品更便宜、饺子数量减少一倍能包多少馅与什么因素有关

使椅子转动角度θ,此时AC与x轴夹角为θ’,此时f(θ’),g(θ’)≥0,在任何时候至少有三条腿在地上,则f(θ’)、g(θ’)至少有一个为0,不妨设f(θ’)=0,g(θ’)>0。将大饺子面积、体积、半径、厚度设为S、V、R、D,小包装面积、体积、半径、厚度为s、v、r、d。设h(θ’)=f(θ’)-g(θ’),为连续函数,则必有0

2024-06-09 18:45:42 983 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除