Matlab课设大作业

一、问题

1、史教授讲授三个班的计算机课程,需要在期末考试中审阅120份考卷,史教授有2个研究生助手,小德和小华审阅期末考卷,所有试卷必须在3天内审阅完毕并公布分数,在这段时间内,小德有12h,小华有10h审阅试卷,小德每审阅一份试卷平均需要7.2min, 小华每审阅一份试卷平均需要12min, 但小德审阅的试卷有10%需要史教授重审,小华审阅的试卷有6%需要重审,那么每个研究生助手分配多少份试卷,可以使史教授重审量最少?

(1)构建规划模型;

(2)求解该规划模型;

(3)如果史教授可以让小德或小华多工作1h,应该选择谁?这1h会有怎样的影响?

2、某工厂有4名操作工可以被指派到4台机器上工作,下表显示了每名工人在每台机器上生产一件产品所需的时间,请制定最优指派方案,并计算总时间的最小值。

操作工

机器A

机器B

机器C

机器D

1

10

12

9

11

2

5

10

7

8

3

12

14

13

11

4

8

15

11

9

3、某企业经营两种商品,第一种商品每吨售价30元,第二种商品每吨售价450元。每售出一吨第一种商品所需要的营业时间平均是0.5h,每售出一吨第二种商品所需要的营业时间平均是(2+0.25

x_2)h,其中x_2是第二种物品售出的数量,已知该企业在这段时间内的总营业时间是800h, 试确定使其营业额最大的营业计划。

4、以x(t)表示时刻t的人口,下面是阻滞增长(Logistic)模型:

试解释模型中涉及的所有变量、参数,并简洁表述该模型的建模思想,什么时候人口增长速度最快。

5、新型冠状病毒肺炎的防控

2019年底,新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19)疫情突然爆发,世界各国人民的生命健康和经济发展受到极大的影响和威胁。虽然各国都出台了一系列的疫情防控措施,但由于国情和民众认同不同等多种因素的影响,导致防控效果有较大的差异。

“群防群控”是控制病毒传播的有效措施,会在短时间内切断病毒的传播途径,但会以经济停滞和人民失业为代价。而欧美某些国家遵循“群体免疫”的策略,通过适当措施“缓和”病毒传播的速度,而不采用封城的措施。采用何种策略需要充分考量病毒本身的传播特征。

请结合全球新型冠状病毒肺炎疫情数据,建立数学模型解决下述问题:选取合理的评价指标,建立数学模型对世界范围内主要国家抗击疫情的效果进行综合评价。

二、解决方案

问题一

(1)构建规划模型;

决策变量:设小德批阅x1份试卷,小华批阅x2份试卷

目标函数:小德重审0.1*x1份,小华重审0.06*x2份

总共重审min=0.1*x1+0.06*x2份

约束条件:                                               x1+x2>=120

                                                                0.12*x1<=12;

0.2*x2<=10;

0.12*x1+0.2*x2<=72;

x1,x2>=0;

(2)求解该规划模型;

min=0.1*x1+0.06*x2;

x1+x2>=120;

0.12*x1<=12;

0.2*x2<=10;

7.2*x1+12*x2<=4320;

x1>0;

x2>0;

end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值