一、问题
1、史教授讲授三个班的计算机课程,需要在期末考试中审阅120份考卷,史教授有2个研究生助手,小德和小华审阅期末考卷,所有试卷必须在3天内审阅完毕并公布分数,在这段时间内,小德有12h,小华有10h审阅试卷,小德每审阅一份试卷平均需要7.2min, 小华每审阅一份试卷平均需要12min, 但小德审阅的试卷有10%需要史教授重审,小华审阅的试卷有6%需要重审,那么每个研究生助手分配多少份试卷,可以使史教授重审量最少?
(1)构建规划模型;
(2)求解该规划模型;
(3)如果史教授可以让小德或小华多工作1h,应该选择谁?这1h会有怎样的影响?
2、某工厂有4名操作工可以被指派到4台机器上工作,下表显示了每名工人在每台机器上生产一件产品所需的时间,请制定最优指派方案,并计算总时间的最小值。
操作工 |
机器A |
机器B |
机器C |
机器D |
1 |
10 |
12 |
9 |
11 |
2 |
5 |
10 |
7 |
8 |
3 |
12 |
14 |
13 |
11 |
4 |
8 |
15 |
11 |
9 |
3、某企业经营两种商品,第一种商品每吨售价30元,第二种商品每吨售价450元。每售出一吨第一种商品所需要的营业时间平均是0.5h,每售出一吨第二种商品所需要的营业时间平均是(2+0.25
)h,其中
是第二种物品售出的数量,已知该企业在这段时间内的总营业时间是800h, 试确定使其营业额最大的营业计划。
4、以x(t)表示时刻t的人口,下面是阻滞增长(Logistic)模型:
试解释模型中涉及的所有变量、参数,并简洁表述该模型的建模思想,什么时候人口增长速度最快。
5、新型冠状病毒肺炎的防控
2019年底,新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19)疫情突然爆发,世界各国人民的生命健康和经济发展受到极大的影响和威胁。虽然各国都出台了一系列的疫情防控措施,但由于国情和民众认同不同等多种因素的影响,导致防控效果有较大的差异。
“群防群控”是控制病毒传播的有效措施,会在短时间内切断病毒的传播途径,但会以经济停滞和人民失业为代价。而欧美某些国家遵循“群体免疫”的策略,通过适当措施“缓和”病毒传播的速度,而不采用封城的措施。采用何种策略需要充分考量病毒本身的传播特征。
请结合全球新型冠状病毒肺炎疫情数据,建立数学模型解决下述问题:选取合理的评价指标,建立数学模型对世界范围内主要国家抗击疫情的效果进行综合评价。
二、解决方案
问题一
(1)构建规划模型;
决策变量:设小德批阅x1份试卷,小华批阅x2份试卷
目标函数:小德重审0.1*x1份,小华重审0.06*x2份
总共重审min=0.1*x1+0.06*x2份
约束条件: x1+x2>=120
0.12*x1<=12;
0.2*x2<=10;
0.12*x1+0.2*x2<=72;
x1,x2>=0;
(2)求解该规划模型;
min=0.1*x1+0.06*x2;
x1+x2>=120;
0.12*x1<=12;
0.2*x2<=10;
7.2*x1+12*x2<=4320;
x1>0;
x2>0;
end