2020-02-12

最长连续子系列

【问题描述】给定一个无序的整数序列a[0…n-1],求其中最长递增子序列的长度。
例如,a[]={2,1,5,3,6,4,8,9,7},n=9,其最长递增子序列为{1,3,4,8,9},结果为5。
#include

using namespace std;

#define MAX 20

int a[MAX] = { 2,1,5,3,6,4,8,9,7 }, b[MAX][MAX] = { 0 };
int n=9, max = -9999, maxpes = -1;

void bfs(int s)
{

if (s >= n)
{
	for (int j = 0; j < n; j++)
	{
		if (b[j][n] > max)//查看从那第元素开始算起,最大的那个递增子序列
		{
			max = b[j][n];
			maxpes = j;
		}
	}
	return;
}

int num = 0, i;
int tempt1 = -9999;

for(i=s; i<n; i++)
{ 
	if (a[i] > tempt1)//判断前驱元素大于当前元素是否
	{
		tempt1 = a[i];//赋值前驱元素
		num = num + 1;
		b[s][i] = 1;  //标记第从S个元素起那个元素是递增的子序列
	}
	else
		continue;
}

b[s][i] = num; //在第N位将从第S个元素起,总共有多少个递增子序列

bfs(s + 1);

}

int main()
{
bfs(0);

cout << max << endl;

for (int i = 0; i < n; i++)
{
	if (b[maxpes][i] == 0) continue;

	cout << a[i] << " ";
}
cout << endl;

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值