最长递增子序列 (动态规划)

  • 题目: 给定一个无序的整数数组,找到其中最长上升序列的长度。
输入: [10, 9, 2, 5, 3, 7, 101, 18]
输出: 4  //最长的上升子序列是[2, 3, 7, 101], 它的长度是4.
  • 解析: 先开一个和nums[]长度相等的新数组dp[],因为只有一个元素的时候,结果必为1,所以把dp[]全都初始化为1。利用两个指针i,j进行比较,把i比j大的上升序列长度存在dp[i]中,利用数学归纳的方法,分别求出dp[0],dp[1] …dp[4],就可以算出来dp[5]。
for (int i = 0; i < nums.size(); i++) {
	for (int j = 0; j < i; j++) {
		if (nums[j] < nums[i]) {
			dp[i] = max(dp[i], dp[j] + 1);
		}
	}
}
  • 参考答案:
class Solution{
public:
	int findLengthOfIncSeq(vector<int>& nums) {
		int n = nums.size();
		int dp[n] = {1};
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < i; j++) {
				if (nums[j] < nums[i]) {
					dp[i] = max(dp[i], dp[j] + 1);
				}
			}
		}
		int res = 0;
		for (int i = 0; i < n; i++) {
			res = max(res, dp[i]);
		}
		return res;
	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值