oj题目 P1092 Matrix Rotation

文章讲述了在处理矩阵旋转问题时,通过算法优化避免了不必要的计算。作者最初使用简单的方法将矩阵旋转多次,但发现对于大规模旋转(如100000000次),这种方法效率低下。之后,作者意识到矩阵旋转360度后会恢复原状,因此只需要计算旋转1次、2次、3次的结果,然后根据旋转次数模4的余数来确定所需矩阵。通过这种方式,显著提高了代码执行效率。
摘要由CSDN通过智能技术生成

题目描述

题目中文描述:

 对于这道题,我想说的是大家应该都知道怎么把矩阵进行旋转90度,我再想你们第一眼看到这题的时候应该就脑海里面呈现出了这道题的解法,但是每个人的解法都不同,我刚看到这题的时候我觉得非常简单,当然等后面实际运行得时候我才发现是我头脑简单,只会用简单粗暴的方法去解它,从没想过有没有更优化得算法,但是这是不对的,对于一道算法题我应该不仅仅是要把它做出来,应该还要思考一下怎样使我的代码更简洁,使我的算法的时间效率更高,这应该是我学习程序设计过程中时刻应该记住的,这点我没有做好,我每次都是能觉得能运行出正确结果就好,好了前面都是废话。如果只想要答案翻到文章最后,文章最后给出了在oj上可以运行通过的源代码;

我看到这道题我脑海里面呈现出的解题思路就是,求出每一个i-matrix矩阵,将他们进行加和,然而我也真的这么做了,也就是如果i=10000那么我就真的把他旋转了10000次,这很容易实现,只要知道怎样把一个矩阵旋转90度那么就知道怎么把一个矩阵旋转10000 x 90度,只需一个for循环就可以实现,于是我写出来下面这个时间成本很高的代码

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#define N 10
long long int sum[N][N] = { 0 };
int matrix[N][N] = { 0 }, temp[N][N] = { 0 };



int main()
{
	int n, matrix[N][N] = { 0 }, temp[N][N] = { 0 };
	long long int k;

	while (scanf("%d", &n) != EOF)
	{

		//sum矩阵用于存放所有i-matrix的和
		for (int i = 0; i < n; i++)
		{
			for (int j = 0; j < n; j++)
			{
				scanf("%d", &matrix[i][j]);
				sum[i][j] = matrix[i][j];           //初始化sum矩阵为matrix矩阵中的值
			}
		}

		scanf("%lld", &k);

		for (long long int i = 0; i < k; i++)
		{
			//旋转90度
			for (int rows = 0; rows < n; rows++)
			{
				for (int columns = 0; columns < n; columns++)
				{
					temp[columns][n - 1 - rows] = matrix[rows][columns];

				}
			}
			//更新matrix为旋转后的矩阵,为下一次加和做准备
			for (int rows = 0; rows < n; rows++)
			{
				for (int columns = 0; columns < n; columns++)
				{
					matrix[rows][columns] = temp[rows][columns];

				}


			}

			//将旋转后的矩阵和原始矩阵进行累加
			for (int rows = 0; rows < n; rows++)
			{
				for (int columns = 0; columns < n; columns++)
				{
					sum[rows][columns] = sum[rows][columns] + temp[rows][columns];

				}
			}

		}
		//打印所有i-matrix矩阵的和
		for (int rows = 0; rows < n; rows++)
		{
			for (int columns = 0; columns < n; columns++)
			{
				printf("%lld ", sum[rows][columns]);

			}
			printf("\n");



		}
	}
	return 0;

}

这个代码在oj上面根本运行不通过,当k=100000000时,将矩阵进行旋转100000000次所花费的时间太长了,运行出正确结果的时间已经超过了1s,所以压根通不过;

所以如何做算法优化呢?对于一个矩阵而言将他旋转360度就又回到它本身,那么将其旋转360度的整数倍后也会回到它本身,所以压根就不用计算旋转 8x90度 后的矩阵是谁,因为旋转8 x 90度后所得的矩阵就是他自己,将矩阵旋转5次,一次旋转90度呢,那么它将和旋转一次,一次旋转90度所得到的矩阵是一样的,旋转6次和旋转2次所得到的结果是一样的,那么我们应该明白了,只用将矩阵旋转1次,旋转2次,旋转3次的结果记录下来就可以,所有旋转(1+4*k)次的结果和旋转1次的结果都一样,k为整数,所有旋转(2+4*k)次的结果和旋转2次的结果也都一样,所有旋转(3+4*k)次和旋转3次所得结果也都一样,所以上述的算法压根就在重复计算已知的值,做一些无用的事情,题目让我们求0-matrix~k-matrix这k+1个矩阵的和,那么我们可以将所有旋转结果分为4类,第一类与不旋转时结果一样的旋转矩阵i-matrix,与旋转一次结果一样的旋转矩阵i-matrix,与旋转两次结果一样的i-matrix旋转矩阵,与旋转3次结果一样的旋转矩阵i-matrix矩阵,假设与旋转0次结果一样的i-matrix矩阵有num0个,与旋转1次结果一样的旋转矩阵i-matrix有num1个,与旋转2次结果一样的旋转结果一样的旋转矩阵i-matrix有num2个,与旋转3次结果一样的旋转矩阵i-matrix有num3个,那么0-matrix~k-matrix这k+1个矩阵的和就可以写为num0 * 0-matrix + num1 * 1-matrix + num2 * 2-matrix + num3 * 3-matrix,代码实现以及运行结果如下:

程序源代码:

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#define N 10


//该函数用于将矩阵旋转90度
void matrix_rotation(long long int array[N][N],int n);

//该函数用于实现将矩阵旋转90度旋转k次
void k_rotation(long long int array[N][N], int n, int k);



int main()
{
	int k;
	int n;
	long long int num0, num1, num2, num3;
	
	while (scanf("%d", &n) != EOF)
	{
		num0 = num1 = num2 = num3 = 0;
		long long int sum[N][N] = { 0 };
		long long int matrix[N][N], temp1[N][N], temp2[N][N], temp3[N][N];
		
		
		//int count = 1;
		//sum矩阵用于存放所有i-matrix的和
		for (int i = 0; i < n; i++)
		{
			for (int j = 0; j < n; j++)
			{
				//matrix[i][j] = count;
				scanf("%lld", &matrix[i][j]);
				temp1[i][j] = matrix[i][j];           //初始化temp矩阵为matrix矩阵中的值
				temp2[i][j] = matrix[i][j];   
				temp3[i][j] = matrix[i][j];
				//count++;
				
			}
		}

		scanf("%d", &k);
		for (long long int c = 0; c <= k; c++)
		{
			if (c % 4 == 0)
			{
				num0++;
			}
			else if (c % 4 == 1)
			{
				num1++;
			}
			else if (c % 4 == 2)
			{
				num2++;
			}
			else if (c % 4 == 3)
			{
				num3++;
			}
		}
		k_rotation(temp1, n, 1);
		k_rotation(temp2, n, 2);
		k_rotation(temp3, n, 3);
		for (int i = 0; i < n; i++)
		{
			for (int j = 0; j < n; j++)
			{
				matrix[i][j] *= num0;
				temp1[i][j] *= num1;
				temp2[i][j] *= num2;
				temp3[i][j] *= num3;
				sum[i][j] = matrix[i][j] + temp1[i][j] + temp2[i][j] + temp3[i][j];
			}
		}
		for (int i = 0; i < n; i++)
		{
			for (int j = 0; j < n; j++)
			{
				printf("%lld ", sum[i][j]);
			}
			printf("\n");
		}
		
	}


		
	return 0;

}

void matrix_rotation(long long int array[N][N],int n)
{
	int temp[N][N];
	for (int rows = 0; rows < n; rows++)
	{
		for (int columns = 0; columns < n; columns++)
		{
			temp[columns][n - 1 - rows] = array[rows][columns];

		}
	}
	for (int rows = 0; rows < n; rows++)
	{
		for (int columns = 0; columns < n; columns++)
		{
			array[rows][columns] = temp[rows][columns];

		}
	}
}

 void k_rotation(long long int array[N][N], int n, int k)
{
	for (int i = 0; i < k; i++)
	{
		matrix_rotation(array, n);
	}
}









运行结果截图

 注意:long long int与int类型不兼容,如果函数的形式参数定义的是int类型,传递实参的时却传递一个long long int型的实参,那么程序将运行出错误的结果;

当运行处错误结果而程序逻辑有没有出错的时候检查实参和形参的数据类型是否定义一致了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值