12、线程同步机制全解析

线程同步机制全解析

1. FIFO 互斥锁

在某些程序里,你可能希望确保被互斥锁阻塞的线程成为该互斥锁的下一个拥有者,而简单的 POSIX 互斥锁定义里并没有这一特性。通常,当两个线程都需要互斥锁来完成工作时会出现这种情况:它们持有互斥锁的时间较长,各自独立工作,且在未持有互斥锁时几乎不做什么。比如,线程 T1 获取互斥锁并执行工作,线程 T2 尝试获取互斥锁但被阻塞。T1 释放互斥锁并唤醒 T2,然而在 T2 获得互斥锁之前,T1 又重新获取了它。

如果实现了 FIFO 互斥锁,当互斥锁的拥有者释放锁时,会自动将所有权交给第一个等待者。不过,这种情况比较罕见,在处理之前值得重新考虑算法。因为对比不同情况会发现,线程可能会花费大量时间处于睡眠状态,或许减少线程数量会让程序运行得更好。但如果确实遇到此类问题,自己实现有保证的 FIFO 互斥锁也并不复杂。不过,大多数情况下你可能并不需要 FIFO 互斥锁。

2. 递归互斥锁
  • Win32 与 POSIX 的差异 :Win32 互斥锁是递归的,同一线程可以多次锁定而不会死锁,POSIX 互斥锁则不具备此特性。虽然用 POSIX 构建递归互斥锁并不难,且递归互斥锁是 UNIX98 的一部分,但关键问题不在于能否构建,而在于是否有必要。在 C 语言中,如果需要使用递归互斥锁,很可能是代码结构设计不佳,应该重新设计代码。因为锁定互斥锁是为了保护共享数据,锁定一次后再次锁定往往是代码结构问题。而且,多次锁定递归互斥锁后,需要解锁相同次数其他线程才能锁定,编写“unlock_all”例程可能会让代码更复杂,容易出错。
  • Java 中
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值