map阶段
1.由InputSplitFormat对输入数据进行逻辑分片(FileInputFormat.class中的getSplits()方法),默认的分片大小是不大于blocksize的大小,不小于配置文件中mapred.min.split.size中定义的大小,每一个分片分配一个map任务。数据按行被解析成key/value键值对,key为每行首字母在文件中的偏移量。
2.每一个map任务拥有一个环形缓冲区,数据不断往缓冲区写入,当达到一定的阈值时(缓冲区大小可配,阈值也可配),数据被写入map所在节点的本地磁盘(目录可配),在写入磁盘的过程中会进行一次预排序,并且会根据用户定义的reduce个数进行分区(partition,每个map都会有多个partition),默认是用hash的方式,用户可以自定义分区方式。
3.map输出到磁盘的文件会不断增多,当达到一定数量的时候触发文件合并,这个时候用户如果启用了combiner函数,则会调用combiner函数,作用是进行本地reduce,减少后续reduce接收过多不必要的数据,减少网络传输。当map任务结束,每个map对应一个已经预分区且排序好的合并后的大文件。
reduce阶段:
1.根据用户定义的reduce数量,随机在container中启动相应数量的reduce。
2.通过http方式从远程节点复制map端产生的文件(不是复制整个文件,而是复制对应区间的数据)。
3.map端的数据复制完毕后进行merge操作。
4.进行用户定义的reduce操作,输出至hdfs。