算法时间复杂度分析

 时间复杂度分析
  1. 只关注循环执行次数最多的一段代码
  2. 总复杂度等于最高阶项的复杂度
  3. 嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
推导O阶 

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。
常见时间复杂度
O(1)常数阶
O(n)线性阶
OI(n2)平方阶
O(logn)对数阶
O(nlogn)线性对数阶
O(n3)立方阶
O(2n)指数阶
O(n!)阶乘阶

从小到大依次是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值