算法训练营Day31 第八章 贪心算法 part1

理论基础 

        贪心算法的本质就是从局部最优中推导出全局最优,比如说:要从一沓钞票中选10张,要求总金额最大,那么我们应该做的就是每次选剩余钞票中最大面额的那张,这样就能得到结果。这就是贪心算法的本质,贪心算法很难总结出相应的解题模板,需要凭感觉来进行贪心的过程,只要举不出反例,就可以尝试使用贪心法!贪心无套路,说白了就是常识性推导加上举反例

第一题: 455.分发饼干

        这道题很适合使用贪心法,局部最优解就是把最大的饼干分发给胃口最大的孩子吃,把这些局部最优解堆叠起来就能得到全局结论。本解法使用了排序+双指针+贪心。代码如下:

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int result = 0;
        int m = g.size() - 1, n = s.size() - 1;
        while(m >= 0 && n >= 0) {
            while(m >= 0 && s[n] < g[m]) m--;
            if(m >= 0) {
                result++;
                n--;
                m--;
            }
        }
        return result;
    }
};

第二题: 376. 摆动序列

        这道题可以使用贪心的方法来做,但是比较复杂了,需要考虑的情况比较多,可能不容易想全。我的想法是,通过for循环遍历数组来判断是否符合题意,并用prev变量来记录上一个数字,如果本次的数字与上一个相同,直接continue;如果不相同,再进行接下来的判断,用一个flag变量记录之前的差值是正数还是负数,初始化为0,第一次比较的时候,为flag赋值为nums[i] - prev即可;当flag为正数,说明上一次是递增的,这一次判断需要是递减的才能计数,如果这次还是递增的,那么我们移动指针向后,并且将本次的值赋给prev变量;同理:flag为负数时,也是一样的操作。我们的本质思想是,找到这个数组的极大值或极小值(注意:不是最值,是极值!!!),也就是找波峰和波谷,这样一定是局部最优解(因为我找不到反例)。

代码如下:

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if(nums.size() == 1) return 1;
        int count = 1;
        int prev = nums[0];
        int flag = 0;
        for(int i = 1; i < nums.size(); ++i) {
            if(nums[i] == prev) continue;//和前一个数相等就不要这个数字了
            else {//与前一个数字不相等时
                if(flag == 0) {
                    flag = nums[i] - prev;
                    count++;
                    prev = nums[i];
                }
                else if(flag > 0) {//上一次结果为增加
                    if(nums[i] - prev < 0) {
                        count++;
                        flag = -1;//将flag置为负数,表示这次结果为减少
                        prev = nums[i];
                        //cout << "hello" << endl;
                    }
                    else {
                        prev = nums[i];
                    }
                }
                else {//上一次结果为减小
                    if(nums[i] - prev > 0) {
                        count++;
                        flag = 1;//将flag置为正数,表示这次结果为增加
                        prev = nums[i];
                    }
                    else {
                        prev = nums[i];
                    }
                }
            }
        }
        return count;
    }
};

可以对代码进行优化:

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
            }
        }
        return result;
    }
};

        后续学到的动态规划方法也能解决这道题目!

第三题: 53. 最大子序和

这道题可以使用贪心+模拟的方法来解决,贪心算法中的局部最优解其实比较难想到。

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。并不是遇到负数就跳过!!!

全局最优:选取最大“连续和”。

代码如下:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT_MIN;
        int sum = 0;
        for(int i = 0; i < nums.size(); ++i) {
            sum += nums[i];
            if(sum < 0) {
                result = max(result, sum);
                sum = 0;
                continue;
            }
            result = max(result, sum);
        }
        return result;
    }
};

        后续学到的动态规划方法也能解决这道题目!

        Day31打卡!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值