第一题:198.打家劫舍
这道题可以用动态规划来解决,比较容易想到。直接就可以写出代码:
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
//dp[i]表示从前i个房屋中偷盗的最大金额
vector<int> dp(n + 1);
dp[1] = nums[0];
for(int i = 2; i <= n; i++) {
dp[i] = max(dp[i - 1], dp[i - 2] + nums[i - 1]);
}
return dp[n];
}
};
还可以对上述代码进行优化,使用滚动数组,使得空间复杂度为常数级别。优化后的代码为:
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
if(n == 1) return nums[0];
int first = nums[0], second = max(nums[0], nums[1]);
for(int i = 2; i < n; i++) {
int tmp = second;
second = max(second, first + nums[i]);
first = tmp;
}
return second;
}
};
第二题:213.打家劫舍Ⅱ
这道题和上一题相比,多了一个限制条件,即:开头和结尾元素也是相邻的,不能同时选取。这道题就变成了需要考虑环形结构,为了简化,还是要将环形结构转化为线性结构再来思考。那么就有以下这三种情况需要考虑:
(1)、不考虑首部和尾部的元素,只从中间选取
(2)、从除了第一个元素外的其他元素中选取
(3)、从除了最后一个元素外的其他元素中选取
仔细分析一下就会发现,其实情况(2)和情况(3)是包含了情况(1)的,那么我们就只用分析后两种情形了。对后两种情况,分别用第一题的思路来解决就ok了。
代码如下:
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
return max(result1, result2);
}
// 198.打家劫舍的逻辑
int robRange(vector<int>& nums, int start, int end) {
if (end == start) return nums[start];
vector<int> dp(nums.size());
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for (int i = start + 2; i <= end; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[end];
}
};
第三题:337.打家劫舍Ⅲ
这道题是一道树形dp问题,需要结合动态规划以及递归的方法来解题。按照递归三部曲来写一下递归函数。
(1)确定函数的参数和返回值:该递归函数参数为二叉树的节点,返回值为一个大小为2的vector<int>数组,数组的首个元素表示不偷这个节点时获取到的最大价值,尾部元素表示偷这个节点时获取到的最大价值;
(2)确定终止条件:当该节点为nullptr时,此时就是终止的条件,应该返回{0, 0};
(3)确定单层递归的逻辑:单层递归的逻辑在于,要获取偷这个节点时的最大价值,以及不偷这个节点时的最大价值。能够发现,每个节点的值是依赖于它的两个子节点,所以应该采取后序遍历的方法,从下往上遍历,这样才能满足我们的需求。
代码如下:
class Solution {
public:
int rob(TreeNode* root) {
vector<int> dp = postOrder(root);
return max(dp[0], dp[1]);
}
private:
//返回一个大小为2的数组dp[2]
//dp[0]表示不偷该节点的情况下获取的最高金额
//dp[1]表示偷该节点的情况下获取的最高金额
vector<int> postOrder(TreeNode* root) {
if(!root) return {0, 0};
vector<int> leftVal = postOrder(root->left);
vector<int> rightVal = postOrder(root->right);
int stealThisNode = root->val + leftVal[0] + rightVal[0];
int nostealThisNode = max(leftVal[0], leftVal[1]) + max(rightVal[0], rightVal[1]);
return {nostealThisNode, stealThisNode};
}
};
Day48打卡!!!