基于STM32单片机手写识别板输入板识别板TFT屏设计145

STM32F103ZET6手写识别145

产品功能描述:

本系统由STM32F103ZET6核心板、2.8寸TFT彩屏组成:

【1】系统上电进入界面后,屏幕下端是输入范围,该系统手写识别只能识别数字和大小写字母。

【2】通过按键K0可以切换识别模式,模式分为全部识别(数字和字母)、只识别数字、只识别大写字母、只识别小写字母模式。

【3】在屏幕下端绘制框规范手写你所需要识别的数字或字母,则处理器自动识别结果进行显示。

【4】如果画笔绘制位置和显示结果位置不一致,可以通过核心板板载的K_UP按键进入后台校准画笔模式,对画笔触摸位置进行校准。​​​​​​​

### STM32实现图像识别以辨识数字 #### 使用工具与环境设置 为了在STM32上实现图像识别并用于辨识数字,推荐使用MDK作为开发环境[^3]。尽管MDK缺乏图形化配置界面以及自动初始化代码生成功能,但这迫使开发者深入了解底层细节,从而更好地掌握整个系统的运作机制。 #### 硬件连接说明 对于硬件部分,建议采用STM32单片机搭配OV7670摄像头模块和TFT显示来构建实验平台[^2]。这样的组合不仅支持高效的图像采集,还能即时显示处理后的结果,非常适合于学习阶段的小型项目实践。 #### 软件设计思路 考虑到资源限制,在嵌入式平台上执行复杂的机器视觉算法可能不太现实;因此,这里提供一种简化的方法——模匹配法来进行基本的手写体阿拉伯数字(0~9)的识别工作。该方法的核心在于预先准备一组标准样本图片,并将其特征存储起来供后续比较之用。 #### 关键函数解析 以下是几个重要的功能模块: - **图像获取**:利用IIC接口读取来自CMOS传感器的数据流; - **预处理操作**:包括灰度转换、二值化等步骤,减少计算量的同时提高准确性; - **特征提取**:针对特定目标选取合适的参数集合作为判别依据; - **分类决策**:运用最邻近法则或其他相似性测度完成最终判定。 ```c // 初始化相机设备 void Camera_Init(void){ // 配置GPIO, IIC通信协议等相关外设... } // 获取一帧图像数据 uint8_t* Get_Image_Frame(){ static uint8_t frame_buffer[FRAME_SIZE]; // 向OV7670发送命令请求新画面... return frame_buffer; } ``` ```cpp #include "image_processing.h" class DigitRecognizer { private: Mat preprocessImage(Mat input); public: int recognizeDigit(Mat imageFrame); }; int DigitRecognizer::recognizeDigit(Mat imageFrame) { vector<int> digitTemplates = loadTemplateDigits(); // 加载训练好的模 Mat processedImg = preprocessImage(imageFrame); // 对输入图像做初步处理 double minDist = DBL_MAX; // 记录最小距离对应的索引位置 int recognizedNum = -1; for (size_t i = 0; i < digitTemplates.size(); ++i) { double dist = compareImages(processedImg, getTemplate(i)); if (dist < minDist) { minDist = dist; recognizedNum = i; } } return recognizedNum; } ``` 上述C++片段展示了`DigitRecognizer`类中的核心成员函数`recognizeDigit()`的工作流程,它接收一幅原始图象作为参数并通过调用辅助函数逐步缩小候选范围直至得出唯一解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值