- 博客(28)
- 收藏
- 关注
原创 2020-08-15
# 第三题from collections import defaultdictx, _ = [int(i) for i in input().split()]pair = []for _ in range(x): tmp = [int(i) for i in input().split()] pair.append(tmp)# 用来记录每个结点的父亲memo = defaultdict(int)# 递归查找父亲结点def father(b): if b not
2020-08-15 17:24:03 179
原创 腾讯面经 集合
腾讯机器学习复试gbtd和xgboost区别和优缺点?L1和L2正则化区别,为什么防止过拟合?类别不平衡怎么解决?Bagging和boosting?随机森林?判别学习和生成学习分别右那些?优化方法?Adam和sgd遇到过拟合怎么办?怎么调参?SVM核函数选择?腾讯机器学习面经一面:电话面算法题:快排,面试官要求只能c++,问选择pivot的时候有没有加速的手段?Python写个n-gram,用列表生成式把1-n gram生成(顺便问了生成器)聊项目:人工特征工程和lighg
2020-08-14 22:34:11 406
原创 京东算法面经 集合
热乎的京东算法岗面经如果onehot等操作之后维度过高你会怎么做;embeddinggbdt的算法流程,和随机森林的区别gbdt各基学习器之间是如何产生联系的;场景题:ctr预估场景做特征工程等;user feat + photo feat + combine featdense feat + sparse feat : sparse feat 进一步做 embedding6、黑白样本失衡该如何处理,如果smote采样的话如何生成样本;7、sigmoid和relu对比;8、神经网络过拟合
2020-08-11 11:35:12 3695 1
原创 2020算法面经问题汇总
!!Linux系统!!linux查看文件(大文件)的命令cat、vi、大文件用lesslinux如何查看系统状态如何查看哪个进程对cpu的占用最大vi 命令vi如何跳转到行尾 shift+4vi如何跳转到行首 shift+6vi命令如何跳转到指定行 :100跳到文本的最后一行:shift+g跳到文本的第一行 先按两次 g!!Python 开发!!线程进程区别 Python GIL进程间通信多态重载读写锁 互斥锁!!机器学习!!xgboost和lightgbm区别
2020-08-11 11:33:01 588
原创 机器学习基础
Word2Vec(cbow+skip-gram+hierarchical softmax+Negative sampling)模型深度解析
2020-08-11 11:32:19 612
原创 Python/Numpy/PyTorch/sklearn/XGBoost/Linux 基础
Python 语法range 和 xrange用法一致,range([start,] stop[, step])。range 返回一个list列表,xrange 返回一个生成器,取一个数据生成一个数据,性能更优。python 多进程与多线程Python多进程与多线程编程from multiprocessing import Processimport osimport timedef long_time_task(i): print('子进程: {} - 任务{}'.format
2020-08-11 11:32:01 498
原创 CS基础 数据结构/网络/操作系统/数据库/设计模式
计算机网络校招面试知识点复习之计算机网络TCP三次握手在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。 第一次握手:建立连接时,客户端发送SYN包(SYN=j)到服务器,并进入SYN_SEND状态,等待服务器确认; 第二次握手:服务器收到SYN包,必须确认客户的SYN(ACK=j+1),同时自己也发送一个SYN包(SYN=k),即SYN+ACK包,此时服务器进入SYN_RECV状态; 第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包AC
2020-08-11 11:31:47 1210
原创 2020 秋招复习
自我介绍自然、忌背书不要“我觉得”,语气坚定。Coding- 剑指offer- LeetCode 精选100- 大厂面经算法题- 常见ML、DL算法,如LR、Kmeans、AUC、BN、NMS、ResBlock等。Python、Numpy、Pytorch基础python 装饰器,supernumpy 常用操作Pytorch 分布式训练的梯度回传、parameter server。最好了解下hadoop、hive、mapreduce原理等。TF和PyTorch 区别机器
2020-08-11 11:31:17 284
原创 论文精读:Semantic Graph Convolutional Networks for 3D Human Pose Regression
原文:Semantic Graph Convolutional Networks for 3D Human Pose Regression代码:garyzhao/SemGCNAbstract略Introduction略Related Work略Semantic Graph Convolutional Networks文章提出了一种新的图网络体系结构来处理涉及可以用图的形式表示的数据的一般回归任务,这些数据。首先介绍 GCN 的背景和相关的 baseline 方法,然后介绍 SemG
2020-05-19 14:35:46 2042 1
原创 姿态估计Top-down系列:Peeking into occluded joints: A novel framework for crowd pose estimation
原文:Peeking into occluded joints: A novel framework for crowd pose estimation代码:OPEC-NetAbstract虽然遮挡在自然界中广泛存在,并且仍然是姿态估计的一个基本挑战,但现有的基于热图的方法在遮挡问题上存在严重的退化。它们固有的问题是,直接根据图像信息定位关节点;然而,不可见的关节点却缺乏图像信息。与直接定位不同的是,文章从推理的角度对不可见关节进行了估计,提出了一个图像引导的渐进式 GCN 模块,该模块提供了对图像
2020-05-13 14:27:48 1260
原创 姿态估计Bottom-up系列中的Grouping方式四:Objects as Points
原文:Objects as Points代码:xingyizhou/CenterNetAbstract略Introduction略Related work略Preliminary假设 I∈RH×W×3I \in \mathbb{R}^{H \times W \times 3}I∈RH×W×3 是一个高H宽W的图像输入。我们的目标是生成一张heatmap Y^∈[0,1]HR×WR×C\hat{Y} \in[0,1]^{\frac{H}{R} \times \frac{W}{R} \
2020-05-13 10:02:02 2654
原创 姿态估计Bottom-up系列中的Grouping方式三:PersonLab
原文:PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model代码:octiapp/KerasPersonLabAbstractIntroductionRelated workMethodsPerson detection and pose estimation文章提出了一种box-free的bottom-up的姿态估计方
2020-05-12 20:18:33 2622 3
原创 姿态估计Bottom-up系列中的Grouping方式二:Part Affinity Fields
原文:Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields代码:openposeAbstract文章提出了一种高效的检测2D多人姿态的方法。文章提出了一种Part Affinity Fields (PAFs)的方法来联系不同个体之间的关节。该体系结构编码来全局上下文,允许贪婪的bottom-up的解析步骤,该步骤在实现实时性能的同时保持高精度,而与图像中的人的数量无关。该体系结构被设计为通过同一顺序预测过程的两个分支来联
2020-05-11 16:13:38 1424
原创 姿态估计Bottom-up系列中的Grouping方式一:Associative Embedding
原文:Associative Embedding: End-to-End Learning for Joint Detection and Groupinggithub:Abstract文章提出了一种全新的用于detection和grouping的监督方法,Associate Embedding。意外的多人姿态估计、实例分割、多目标跟踪问题都采用了two-stages,先detect后group的方式。文章提出的associate embedding 同时输出detection 和 grouping的
2020-05-09 20:10:03 2096 1
原创 字节跳动面经 合集
logit函数和sigmoid函数是什么关系?logit函数和sigmoid函数互为反函数, logisitic 函数就是sigmoid函数。其中,logit(p)=lnp1−plogit(p) = ln \frac{p}{1-p}logit(p)=ln1−pp, simoid(x)=11+e−xsimoid(x) = \frac{1}{1+e^{-x}}simoid(x)=1+e−x1....
2020-03-29 22:01:37 1211
转载 L1正则化与稀疏性、L1正则化不可导问题
转:L1正则化与稀疏性L1正则化使得模型参数具有稀疏性的原理是什么?机器学习经典之作《pattern recognition and machine learning》中的第三章作出的一个解释无疑是权威且直观的,我们也经常都是从这个角度出发,来解释L1正则化使得模型参数具有稀疏性的原理。再回顾一下,以二维为例,红色和黄色的部分是L1、L2正则项约束后的解空间,蓝色的等高线是凸优化问题中的目标函...
2020-03-25 10:11:45 839
转载 基础目标检测算法介绍:CNN、RCNN、Fast RCNN和Faster RCNN
基础目标检测算法介绍(一):CNN、RCNN、Fast RCNN和Faster RCNN0.快速回忆正文:每次丢了东西,我们都希望有一种方法能快速定位出失物。现在,目标检测算法或许能做到。目标检测的用途遍布多个行业,从安防监控,到智慧城市中的实时交通监测。简单来说,这些技术背后都是强大的深度学习算法。在这篇文章中,我们会进一步地了解这些用在目标检测中的算法,首先要从RCNN家族开始,例如...
2020-03-24 17:55:33 626
转载 机器学习算法总结--决策树(ID3、C4.5、CART)
转:机器学习算法总结(二)——决策树(ID3, C4.5, CART)决策树是既可以作为分类算法,又可以作为回归算法,而且在经常被用作为集成算法中的基学习器。决策树是一种很古老的算法,也是很好理解的一种算法,构建决策树的过程本质上是一个递归的过程,采用if-then的规则进行递归(可以理解为嵌套的 if - else 的条件判断过程),关于递归的终止条件有三种情形:当前节点包含的样本属于同一...
2020-03-22 12:58:23 1968
转载 Python装饰器
Python装饰器装饰器语法糖入门用法日志打印器入门用法:时间计时器进阶用法:带参数的函数装饰器高阶用法:不带参数的类装饰器高阶用法:带参数的类装饰器wrapped准确点说,wraps 其实是一个偏函数对象(partial),源码如下def wraps(wrapped,直接使用 functools.partial 帮助构造 # DelayFunc 实例实例化添加属性查询属性删除属性添加属性查...
2020-03-20 17:54:45 172
转载 Python 常见面试题
Table of ContentsPython语言特性1 Python的函数参数传递2 Python中的元类(metaclass)3 @staticmethod和@classmethod4 类变量和实例变量5 Python自省6 字典推导式7 Python中单下划线和双下划线8 字符串格式化:\x和.format9 迭代器和生成器10 *args and **kwarg...
2020-03-20 17:54:00 883
原创 蘑菇街一面 图像算法实习生
@2020/3/10项目因为项目和论文过于match,所以几乎只问了项目和论文,顺带性的让我介绍了下简历里写的目标检测和人体姿态估计。
2020-03-10 17:33:19 553
原创 常用Normmalization: BN、LN、IN和GN总述
一、BN、LN、IN和GN总述常用的Normalization方法主要有:Batch Normalization(BN,2015年)、Layer Normalization(LN,2016年)、Instance Normalization(IN,2017年)、Group Normalization(GN,2018年)。它们都是从激活函数的输入来考虑、做文章的,以不同的方式对激活函数的输入进行 N...
2020-03-10 16:36:19 755
原创 深度学习 优化器
梯度下降法对于优化算法,优化的目标是网络模型中的参数θ(是一个集合,θ1、θ2、θ3 …)目标函数为损失函数L = 1/N ∑ Li (每个样本损失函数的叠加求均值)。这个损失函数L变量就是θ,其中L中的参数是整个训练集,换句话说,目标函数(损失函数)是通过整个训练集来确定的,训练集全集不同,则损失函数的图像也不同。那么为何在mini-batch中如果遇到鞍点/局部最小值点就无法进行优化了呢?因...
2020-03-10 15:28:27 302
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人