ElasticSearch的scroll滚动查询以及在Springboot中的使用

什么是es中的scroll?

scroll即滚动查询,我们知道,es中在进行普通的查询时,默认只会查询出来10条数据。我们通过设置es中的size可以将最终的查询结果从10增加到10000,那么问题来了,当我们需要查询的数据大于10000条怎么办?这时有两种方式解决:深度分页滚动查询。优先使用滚动查询,因为深度分页越往后查性能越低,极其耗费内存和CPU。

深度分页

分页即使用from和size,如下:

{
    "query": {
        "match_all": {}
    },
    "from": 9990,
    "size": 20
}

像这样就能够获取到9990-10010的20条数据了,但是这样每次都需要将前面的9990条数据查询出来,然后再向下继续寻找后面的20条,最终就会导致搜索很深,即深度分页,性能就会受到极大影响,因此这种方式不推荐使用。

滚动查询

滚动查询,和关系型数据库中的游标有点类似,因此也叫游标查询。也相当于一个快照,它是es中提供的一种查询大数据量的方式。

在dsl语句中,完成一个scroll查询分为两步:

第一步:带有查询条件,根据条件查询。

GET search_account/_search?scroll=1m
{
  "size":1000, 
  "query": {
    "term": {
      "type": {
        "value": "生活"
      }
    }
  }
}

这是一个简单的term查询哈,这个查询条件比较简单,相当于一个示意,关键点两个:

① scroll表示这是一个scroll滚动查询;

② scroll=1m表示查询的结果数据在es服务器中过期时间为1min。

该查询返回的结果如下:

可以看到,返回结果中有一个_scroll_id字段,该字段其实就相当于一个书签,在我们之后的查询中需要带着这个书签,就可以一直往后根据设置的size大小获取数据(前提是在设置的过期时间之内)。

第二步:获取的scroll_id作为查询条件往后查询数据。

GET /_search/scroll/
{
  "scroll":"1m",
  "scroll_id":"DnF1ZXJ5VGhlbkZldGNoBgAAAABtmn3QFnJNSEk2S2FBVENTQ21JR0dtVXZEbFEAAAAAaePcNhZaOGZsVmdlaFRNdVgyYS04dlNhTDJBAAAAAG2afdEWck1ISTZLYUFUQ1NDbUlHR21VdkRsUQAAAABplHFdFkpvME9pZEd1U0pXdVlSc29CYXFkZHcAAAAAamCmqhZVNXRmNFhlNFN5NjZwMHZraE5ndEV3AAAAAGnj3DcWWjhmbFZnZWhUTXVYMmEtOHZTYUwyQQ=="
}

将获取的scroll_id作为条件继续查询即可,不需要再指定索引和类型。因为scroll_id具有唯一性,在过期时间内,之后查询的scroll_id是不变的。

滚动查询在Springboot中的使用

以上说明的是在dsl语句中如何使用scroll,但是既然涉及到大数据量,在dsl中完成就不太可能了,一般都是通过代码的方式进行滚动查询。这里说明一下es中的scroll查询在Springboot中的使用:

环境准备:springboot项目,es依赖,restHighLevelClient客户端配置。(具体配置这里就不赘述了,咱们直接上手)

需求描述:现已经获取了大批账号的uid(20万以上的数据),需要根据这些账号的uid去es中查询账号所属的分类信息。

代码:

public String redoAccountTypeByScroll(List<String> uidList) {
        List<List<RedoAccountTypeVO>> resultList=new ArrayList<>();

        //构造es查询条件。
        SearchRequest searchRequest = new SearchRequest("search_account");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();

        sourceBuilder.query(QueryBuilders.termsQuery("uid",uidList))
                //设置最多一次能够取出10000条数据,从第10001条数据开始,将开启滚动查询。
                .size(10000)
                .fetchSource(new String[]{"uid","type"},null);
        searchRequest.source(sourceBuilder);
        //设置scroll超时时间(10min)。
        Scroll scroll=new Scroll(TimeValue.timeValueMinutes(10L));
        //放入滚动查询对象。
        searchRequest.scroll(scroll);
        SearchResponse response = restHighLevelClient.search(searchRequest);

        //TODO:这里可以解析response对象,获取前10000条数据,封装实体类对象(属性为uid和type),并构成集合accountTypeVOList。我这里假设已经解析response对象完成,得到了accountTypeVOList集合。
        resultList.add(accountTypeVOList);

        //记录滚动id。
        String scrollId=response.getScrollId();
        //滚动查询部分,将从第10001条数据开始取。
        SearchHit[] scrollHits = response.getHits().getHits();
        while (ObjectUtil.isNotNull(scrollHits) && scrollHits.length > 0 ) {
            //构造滚动查询条件
            SearchScrollRequest searchScrollRequest = new SearchScrollRequest(scrollId);
            searchScrollRequest.scroll(scroll);
            //响应必须是上面的响应对象,需要对上一层进行覆盖。
            response = restHighLevelClient.scroll(searchScrollRequest);
            scrollId = response.getScrollId();
            scrollHits=response.getHits().getHits();

            //TODO:同上面一样,在这个位置可以对滚动查询到的从10001条数据开始的数据进行处理(封装实体类),构成集合accountTypeVOList(假设我已经构成了集合)。
            resultList.add(accountTypeVOList);
        }

        //TODO:在循环结束后可以遍历resultList这个大集合,来实现我们自己的需求,我这里是获取账号分类(由于我这里需要调用其它项目完成账号分类的获取,代码就不再贴了,感觉冗余。读者需要明白这里是实现自己的业务需求)。
       

        //数据获取完毕后需要清楚滚动,否则影响下次查询。
        ClearScrollRequest clearScrollRequest = new ClearScrollRequest();
        clearScrollRequest.addScrollId(scrollId);
        ClearScrollResponse clearScrollResponse = restHighLevelClient.clearScroll(clearScrollRequest);
        //清除滚动是否成功
        boolean isSuccess = clearScrollResponse.isSucceeded();
        log.info("=====================>清楚滚动scroll是否成功:{}",isSuccess);
        return "==================>账号分类获取完毕~";
    }

总结:

① 滚动查询是建立在普通查询基础上的。

② 需要注意的是:滚动查询相当于快照,如果在使用scroll进行滚动查询期间有增删改的操作,那么查询结果是获取不到最新的数据的。

③ 深度分页和滚动查询优先使用滚动查询,性能更优,CPU资源耗费更少。

希望对你有所帮助!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值