某鱼流出外贸版准新锐龙高性能迷你主机,标配锐龙R7 5700U,双硬盘位,全功能Type-C接口,办公设计游戏流畅全能小主机!

要说小主机小巧便携,还得性能强悍,最起码可玩网游,那还得是AMD锐龙核显迷你主机,极致的小巧以及强悍的性能,满足办公影音娱乐游戏设计功能需求,比如下面这款某鱼流出外贸版准新锐龙高性能迷你主机,BOSGAME P1迷你主机。

图片

关注我,后续分享更多精彩内容

关注可加交流群哈!

群里有大佬哥

纯个人交流群,无利益纠纷,随意畅聊装机乐趣,优化装机配置!

有大佬,也有小白,欢迎您的加入,期待您的分享!

图片

图片

扫码添加后可拉DIY交流群!

一、外贸版锐龙高性能迷你主机介绍

这款外贸版锐龙高性能迷你主机具体规格型号为BOSGAME P1,目前主流也是典型的方盒子造型的小主机,非常的小巧和便携,属于小身材,大能量的典型小钢炮迷你主机,整个黑色机身设计,纹理的点缀下更加具有高级质感,而且开机键位特意设计为红色,极具设计感。

接口方面,正面接口包括开机键位,一个3.5mm耳机孔位,2个usb3.0接口以及一个全功能的type-c接口。后置面板则包含一个千兆网口,2个usb2.0接口,以及2个HDMI2.0接口支持4K输出显示,对了,还有一个DC供电孔位,应该是国外规格,所以是外贸版,而且双HDMI接口和type-c接口都是支持视频输出显示的。

二、外贸版锐龙高性能迷你主机参数

小主机配置方面,搭载 AMD Ryzen 7 5700U 8核16线程处理器,内存为DDR4笔记本双内存插槽,存储为M2 NVME 2280+2.5寸SATA硬盘接口,双盘位,主机自带2.5G双网口,全功能Type-C接口,双频WiFi6,蓝牙5.2。

外贸版锐龙高性能迷你主机参数

品牌型号:BOSGAME P1

CPU:AMD Ryzen 7 5700U 8核16线程处理器

内存:DDR4笔记本双内存插槽

硬盘:M2 NVME 2280+2.5寸SATA硬盘接口

AMD R7 5700U为7纳米制作工艺,Zen 2架构,它的最大睿频也达到4.3GHZ,8核心16线程,性能相当于英特尔的酷睿i5-1035G7水平,性能也远远领先于当今市场上的N系列处理器,在CPU Z分数测试中,单核为471.8分,多核为3840.6分。

AMD R7 5700U集成核显为AMD Radeon RX Vega 8相当于GTX750Ti独显水平,表现更有优势些,能够流畅运行各类办公软件,也可以兼顾轻度设计,比如PS、PR、LR等需求,这个成绩平时玩一些游戏也不是不可以,像原神、英雄联盟此类游戏,也能算是流畅玩耍。

三、外贸版锐龙高性能迷你主机价格

目前外贸版锐龙高性能迷你主机价位在968元左右,为准系统版本,无内存,无硬盘,这个价位肯定是传家宝级别了!

同平台AMD R7 5700U笔记本整机价位在1150元左右,某宝R7 5700U es 版迷你主机价位在964元左右,对比之下,被人吐槽不合理性凸显。

如今的某鱼早已经很难捡漏,尤其是越新的机子你可以多平台对比全新的机子参考,关键如今还有国补及活动好价,对比下来,真的入手全新更香些吧!

以上仅一家之言,仅供参考!

   往期精彩:

当下现役显卡推荐游戏性能排行榜(AMD篇)!

图片

DIY电脑垃圾佬的最爱——“钉子户”E3神教装机配置清单推荐!

图片

DIY电脑垃圾佬的最爱——低价(高性价比)装机配件推荐!

图片

DIY电脑垃圾佬的最爱——P106-100显卡!

图片

渣渣手残党DIY装机必备软件工具教程推荐!

图片

往期手残记录:


DIY组装电脑踩坑,手残党DIY装机分享!

图片

老爷“鸡”升级小记!

图片

假装是个电工,记一次家用监控安装之旅

图片

·················END··················

扫码添加后可拉DIY交流群!

你好,我是菜鸡@搞机子,

革命老区外出进城务工人员,

IT垃圾佬、喜欢数码、捡垃圾、DIY电脑...

公众号不挣钱,交个朋友。

扫码关注,滴,学生卡;

老司机,快上车;

关注我,三千预算进图吧,学校对面开网吧!

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值